
Faculty of Philosophy
General Linguistics

Syntax & Semantics WS2019/2020
Lecture 22: Syntax & Semantics Interface

31/01/2020, Christian Bentz



Overview

Section 1: Recap of Lecture 21

Section 2: Valency in Syntax and Semantics

Section 3: Formal Composition
Semantic Types
Semantic Functions

Section 4: Translating Syntactic into Semantic Trees

References

2 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Semantics Lectures

I Lecture 18: Introduction to Semantics
Kroeger (2019). Chapters 1-2.

I Lecture 19: Word Meaning
Kroeger (2019). Chapter 5-6.

I Lecture 20: Propositional Logic
Kroeger (2019). Chapter 3-4; and Zimmermann &
Sternefeld Chapter 7.

I Lecture 21: Predicate Logic
Kroeger (2019). Chapter 4; and Zimmermann &
Sternefeld Chapter 10 (p. 244-258).

I Lecture 22: Syntax & Semantics Interface
Kearns (2011). Semantics. Second Edition. Chapter
4.; Zimmermann & Sternefeld (2013), Chapter 4.

3 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 1: Recap of Lecture 21



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

“[...] fand ich ein Hindernis in der
Unzulänglichkeit der Sprache,
die bei aller entstehenden
Schwerfälligkeit des Ausdruckes
doch, je verwickelter die
Beziehungen wurden, desto
weniger die Genauigkeit erreichen
liess, welche mein Zweck
verlangte. Aus diesem
Bedürfnisse ging der Gedanke der
vorliegenden Begriffsschrift
hervor.”

Frege (1879). Begriffsschrift: Eine
der arithmetischen nachgebildete
Formelsprache des reinen
Denkens, p. X.

Translation: [...] I found the inadequacy of
language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I
was less and less able, as the relations became
more and more complex, to attain the precision
that my purpose required. This deficiency led me
to the idea of the present ideography.

5 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Logical Symbols

The following types of logical symbols are relevant for our
analyses:

I Logical operators (connectives) equivalent to the
ones defined in propositional logic: ¬, ∧, ∨,→,↔

I The quantifier symbols: ∀ (universal quantifier), ∃
(existential quantifier)

I An infinite set of variables: x, y, z, etc.1

I Parentheses ‘()’ and brackets ‘[]’2

1This set is called Var in Zimmermann & Sternefeld (2013), p. 244.
2Beware: In the propositional logic notation, we used parentheses ‘()’ for

disambiguating the reading of a propositional logic expression as in (p→ q) ∧ q.
However, in the predicate logic notation, parentheses can also have a different function
(see below).

6 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Logical Symbols: Quantifiers

“Standard predicate logic makes use of two quantifier
symbols: the Universal Quantifier ∀, and the Existential
Quantifier ∃. As the mathematical examples [below]
illustrate, these quantifier symbols must introduce a
variable, and this variable is said to be bound by the
quantifier.”
Kroeger (2019) Analyzing meaning, p. 69.

Examples:

For all x it is the case that x plus x equals x times two.
There is some y for which y plus four equals y divided by
three.

Quantifier notation:

∀ x [x+x = 2x]
∃ y [y+4 = y/3]

Note: The square brackets are used here to illustrate the formulation
that the quantifier scopes over.

7 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Non-Logical Symbols: Predicates

Predicate symbols: these are typically given as upper case
letters, and reflect relations between n elements, where
n ≥ 0, and n ∈ N (i.e. natural numbers). These are also
called n-ary or n-place predicate symbols: P(x), P(x , y),
Q(x , y), etc.

Examples:
x snores
x is honest
x sees y
x gives y z

Predicate notation:
P(x)≡ SNORE(x)
Q(x)≡ HONEST(x)
R(x,y)≡ SEE(x,y)
S(x,y,z)≡ GIVE(x,y,z)

The single upper case letter notation is used by Zimmermann & Sternefeld (2013), the
all capital notation is used by Kroeger (2019). Yet another notation involving primes
(e.g. snore′was used earlier in the lecture following Müller (2019). In the following we
will use the notation by Kroeger.

8 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Non-Logical Symbols: Functions
Function symbols are different from predicates since they do not
denote a relation between the variables, but they map the variables to
unique values. Importantly, a function with n = 0, i.e. zero valence, is
called a constant symbol and denotes for example an individual or
object.

Examples:

Socrates
Paris
a crocodile
father of x

Function notation:

s
p
c
f(x)

Note: s, j, p, and c are constant symbols here, i.e. strictly speaking zero valence
functions, while f (x) is a monovalent function. It is important to realize that while lower
case letters are used for both constant symbols and variables (i.e. x), they represent
different elements of predicate logic. The convention here is to use the first letter of the
respective name in lower case as a constant symbol, while variables start at x.

9 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Predicates and Quantifiers
Importantly, formulating predicates which involve quantifications
requires the usage of particular logical operators, since quantifiers
require variables, and the variables then need to be further linked to
predicates via logical operators.

(1) All students are weary. ∀x[STUDENT(x)→WEARY(x)]
lit. “For all x it is the case that if x is a student, then x is weary.”

(2) Some men snore. ∃x[MAN(x)∧SNORE(x)]
lit. “There exists some x for which it is the case that x is a man
and x snores.”3

(3) No crocodile is warm-blooded. ¬∃x[CROCODILE(x)∧WARM-
BLOODED(x)]
lit. “It is not the case that there is some x for which x is a
crocodile and x is warm-blooded.”

3Note that while the plural men suggests that we are talking about 2 or more
individuals, the predicate logic formulation is valid for 1 or more individual(s).

10 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Multi-Valent Predicates and Quantifiers
“When a quantifier combines with another quantifier, with negation, or
with various other elements [...], it can give rise to ambiguities of
scope.”
Kroeger (2019). Analyzing meaning, p. 72.

(4) Some man loves every woman.

i. ∃x[MAN(x)∧(∀y[WOMAN(y)→LOVE(x,y)])]
lit. “Fore some x it is the case that x is a man and [for all y it is the case that
y is a woman and x loves y].”

ii. ∀y[WOMAN(y)→(∃x[MAN(x)∧LOVE(x,y)])]
lit. “For all y it is the case that if y is a woman then there is an x which is a
man and x loves y.”

(5) All that glitters is not gold.

i. ∀x[GLITTER(x)→ ¬GOLD(x)]
lit. “For all x it is the case that if x glitters then x is not gold.”

ii. ¬∀x[GLITTER(x)→GOLD(x)]
lit. “It is not the case for all x that if x glitters then x is gold.”

Note: In the first case the ambiguity is between whether the existential quantifier scopes over the universal quantifier, or the
other way around. In the second example the ambiguity is whether the negation scopes over the universal quantifier or the
other way around.

11 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Example Denotations

Let us further assume the denotation sets of three
predicates and three constant symbols. These denotation
sets specify which individuals of U a particular expression
can possibly denote.

JMANK = {King Henry VIII, Thomas Moore}
JWOMANK = {Anne Boleyn}
JSNOREK = {King Henry VIII}
JhK = {King Henry VIII}
JaK = {Anne Boleyn}
JtK = {Thomas Moore}

12 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Example Model Evaluation
Based on our example model, consisting of the example domain and the example
universal set, we can now evaluate the truth values of predicate logic expressions.
One-place predicates are evaluated by whether the constant symbol is a member of
the denotation set of the predicate. Logical operators are evaluated the same way as in
propositional logic. Quantifiers are evaluated according to subset relations.

See Kroeger (2019). Analyzing meaning, p. 241.

13 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 2: Valency in Syntax and
Semantics



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Formal Definition: Extensions
Remember from Lecture 1 that within denotational
semantics meaning is construed as the mapping between a
given word and the real-world object it refers to (reference
theory of meaning). More generally, words, phrases or
sentences are said to have extensions, i.e. real-world
situations they refer to.
Zimmermann & Sternefeld (2013), p. 71.

Type of expression Type of extension Example Extension of example
proper name individual Paul Paul McCartney
definite description individual the biggest German city Berlin
noun set of individuals table the set of tables
intransitive verb set of individuals sleep the set of sleepers
transitive verb set of pairs of individuals eat the set of pairs 〈eater ,eaten〉
ditransitive verbs set of triples of individuals give the set of triples 〈donator , recipient ,donation〉

15 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Formal Definition: Extensions
“Let us denote the extension of an expression A by putting
double brackets ‘JK’ around A, as is standard in semantics.
The extension of an expression depends on the situation s
talked about when uttering A ; so we add the index s to the
closing bracket.”
Zimmermann & Sternefeld (2013), p. 85.

JPaulKs = JpKs= Paul McCartney4

JtableKs = JTABLEKs = {table1, table2, table3, . . . , tablen}5

JsleepKs = JSLEEPKs = {sleeper1, sleeper2, sleeper3, . . . , sleepern}
JeatKs = JEATKs =
{〈eater1, eaten1〉, 〈eater2, eaten2〉, . . . , 〈eatern, eatenn〉}

4Zimmermann & Sternefeld just put the full proper name in brackets here, Kroeger
follows another convention and just put the first letter in lower case, e.g. JpKs.

5Kroeger (2019) uses upper case notation for both nouns and predicates, e.g.
TABLE and SLEEP respectively.

16 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Valence according to Tesnière (Syntax Lecture 3)

“Nous avons vu qu’il y avait des verbes sans actant,
des verbes à un actant, des verbes à deux actants
et des verbes à trois actants.”
Tesnière (1959). Éléments de syntaxe structurale, p. 238.

Verb

Arguments

Sentence Type:

Valency:

V

_

impersonal
sentence

avalent (0)

V

A

intransitive
sentence

monovalent (1),
one-place
predicate

V

A A

transitive
sentence

bivalent (2),
two-place
predicate

V

A A A

ditransitive
sentence

trivalent (3),
three-place
predicate

Note: MÃ1
4 ller states that the pronouns in expletives (e.g. it rains) should be considered

obligatory arguments of the verb, while Tesnière explicitely calls them “sans actant”.

17 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Valence according to Tesnière (Syntax Lecture 3)

“Nous avons vu qu’il y avait des verbes sans actant,
des verbes à un actant, des verbes à deux actants
et des verbes à trois actants.”
Tesnière (1959). Éléments de syntaxe structurale, p. 238.

Verb

Arguments

Example:

pleut

_ (il)

il pleut
“it rains”

dort

Alfred

Alfred dort
“Alfred
sleeps”

frappe

Alfred Bernard

Alfred frappe
Bernard

“Alfred hits
Bernard”

donne

Alfred le livre Charles

Aflred donne le
livre à Charles

“Alfred gives the
book to Charles”

18 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Valency in Semantics
“[...] one may detect an increasing complexity concerning the so-called
valency of verbs [...] Corresponding to these types of predicates there
are three-place tuples (triples), two-place tuples (pairs) and
one-place tuples (individuals).”

Parallelism between valency and type of extension:
The extension of an n-place verb is always a set of n-tuples.
Zimmermann & Sternefeld (2013). Introduction to semantics, p. 72.

Verb

sleep
see
give

Valency

monovalent
bivalent
trivalent

Extension

JSLEEPKs = {sleeper1, sleeper2, . . . , sleeperm}
JSEEKs = {〈seer1, seen1〉, . . . , 〈seerm, seenm〉}
JGIVEKs =
{〈giver1, receiver1, given1〉, . . . , 〈giverm, receiverm, givenm〉}

Note: We use m instead of n here as an index, in order to not confuse it with the n
representing the valency.

19 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Filling of Arguments/Gaps
As the arguments of an n-place verb are “filled in”, the extensions
change according to how many components6 are in the tuples.7

Zimmermann & Sternefeld (2013). Introduction to semantics, p. 72.

Verb or VP Valency Extension

_ shows _ _ 3 set of all triples 〈a,b, c〉
where a shows b c

_ shows the president _ 2 set of all pairs 〈a, c〉
where a shows the president c

_ shows the president
the Vatican Palace 1

set of all individuals (1-tuples) 〈a〉
where a shows the president

the Vatican Palace

The Pope shows the president
the Vatican Palace 0

set of all 0-tuples 〈〉
where the Pope shows the president

the Vatican Palace

6Zimmermann & Sternefeld (2013), p. 67 point out that we speak of components of
tuples (ordered lists), but elements of sets.

7Note: the individuals (constant symbols) are here given as a, b, and c. In the
Kroeger (2019) notation, we would use p1, p2, v (the first letter of the respective name).

20 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Interlude: 0-Valence and Truth Values
If we have a complete sentence with all arguments filled,
then the verb strictly speaking has zero valence, and the
extension of the sentence is the set of zero-tuples. This
might seem strange at first, but note that this leads to
Frege’s Generalization, namely that the extension of a
sentence is its truth value.
Zimmermann & Sternefeld (2013), p. 74.

S: The Pope shows the president the Vatican Palace.

JSKs = {∅} ≡ 1 ≡ T, with s being a situation in which the
Pope actually shows the president the Vatican Palace.
JSKs = ∅ ≡ 0 ≡ F, with s being a situation in which the Pope
does not show the president the Vatican Palace.

21 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 3: Formal Composition



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Combinatoriality in Semantics

(6) Kim
kim

sieh-t
see-PRS.3SG

ein-en
DET.INDF-ACC.SG

groß-en
big-ACC.SG

Baum
tree.ACC.SG
“Kim sees a big tree”
∃x[TREE(x)∧SEE(k,x)]

In the example above, the meaning of the overall sentence
arguably derives as a combination of the meanings of the
individiual parts.

23 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Formal Composition

“Compositional semantic theories assume that the syntax
and semantics work in parallel. For each phrase structure
rule that combines two expressions into a larger phrase,
there is a corresponding semantic rule which combines the
meanings of the parts into the meaning of the newly formed
expression.”
Kearns (2011). Semantics, p. 57.

24 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Semantic Types

“Linguistic expressions are classified into their semantic
types according to the kind of denotation they have. The
two most basic denotation types are type e, the type of
entities, and type t, the type of truth values.”
Kearns (2011). Semantics, p. 57.

Type of expression Type of extension Semantic type Example
proper name individual (entity) e JPaulKs=Paul McCartney
... ... ... ...
sentence truth value t JPaul is happyKs ∈ {0,1}

25 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Functional Application

“[...] a function binds arguments together into a statement.
From this insight, Frege proposed that all semantic
composition is functional application. Functional
application is just the combination of a function with an
argument.”
Kearns (2011), p. 58.

Formal Definition
“We can define the following combinatorial rule for [...]
typed expressions:
If α is of type 〈b,a〉 and β of type b, then α(β) is of type a.
This type of combination is called functional application.”
Müller (2019), p. 188.

26 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Example: Recursive Application

α(β) = a

α = 〈b,a〉 β = b

Note: The functional application of the component b to the tuple 〈b,a〉
is a mapping from b to a (this is how mathematical functions are defined,
see also Kroeger (2019), p. 235 on relations and functions). For
illustration, this might be thought of as an inference: the tuple expresses
if b then a. b expresses b is the case, hence we get a. Importantly, it is
always the left component in a tuple that is the argument, and the right
component is the outcome value.

27 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Example: Recursive Application

a

〈b,a〉 b

〈a,b〉 a

〈b,a〉 b

〈a,b〉 a

Note: We can apply functional application recursively add infinitum to
create a binary tree. Binarization is a fixed constraint in
type-theoretic semantic analysis. Note that it a and b always switch
here, since it is always the left component in the tuple that is the
argument.

28 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Example: Recursive Application

a

〈〈a,b〉,a〉 〈a,b〉

〈a, 〈a,b〉〉 a

〈〈a,b〉,a〉 〈a,b〉

〈〈a,b〉, 〈a,b〉〉 〈a,b〉

Note: Binarization does not mean that there are only a maximum of two
components in each overall tuple. Instead there can be infinitely many
2-tuple embeddings. But each individual tuple can only have two
components. Hence, we can built more complex semantic types out of
the two basic types e and t.

29 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 4: Translating Syntactic into
Semantic Trees



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Interlude: Syntax Trees
We will now translate syntactic trees into type-theoretic trees that are
eventually used in semantic analyses to compose the meaning of
constituents and whole sentences. Note: While often X-bar theoretic
trees are used in parallel to semantic analyses, we will use simple PSG
trees here for illustration (see also Kearns (2011), p. 59). Importantly,
these need to be binarized trees.

S

NP

DET

The

N

child

VP

V

reads

NP

DET

a

N

book

31 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Semantic Types: One-Place Predicates

An intransitive verb requires one argument to be filled in
order to form a full sentence, hence it is of the type 〈e,t〉.
Remember that the argument is on the left side of the tuple,
hence the component of type entity (e) is left.

S

NP

N

Midge

VP

V

grins

t

e

Midge

〈e,t〉

grins

32 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Semantic Types: Two-Place Predicates

A transitive verb requires two arguments to be filled in
order to form a full sentence, hence it is of the type 〈e, 〈e,t〉〉.

S

NP

N

Midge

VP

V

likes

NP

N

Mary

t

e

Midge

〈e,t〉

〈e, 〈e,t〉〉

likes

e

Mary

33 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Semantic Types: Three-Place Predicates

A ditransitive verb requires three arguments to be filled in
order to form a full sentence, hence it is of the type
〈e, 〈e, 〈e,t〉〉〉.

S

NP

N

Midge

VP

VP

V

gave

NP

N

Mary

NP

N

icecream

t

e

Midge

〈e,t〉

〈e, 〈e,t〉〉

〈e, 〈e, 〈e,t〉〉〉

gave

e

Mary

e

icecream

34 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Semantic Types: Nouns

Common nouns are of type type 〈e,t〉. This might seem
counterintuitive at first sight, but the idea here is that nouns
are essentially like one-place predicates, in the sense that
they require a concrete entity (e) to form a basic existential
statement (with a copular) which can be true or false.

t

e

Midge

〈e,t〉

(is a) dog

Note: This corresponds to the predicate logic formulation DOG(m), where the copular
and the indefinite determiner are also dropped. As pointed out earlier in the lecture,
the copular is a problematic and controversial element to analyze within syntactic
theories, hence, the syntactic tree is not given here.

35 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Semantic Types: NPs and Determiners

NPs are of type e, i.e. referring to a concrete entity. Note
that it follows from this definition and the definition of
common nouns above that determiners then have to be of
type 〈〈e,t〉,e〉.

NP

D

the

N

dog

e

〈〈e,t〉,e〉

the

〈e,t〉

dog

Note: This illustrates the semantic argument for why phrases consisting of nouns and
determiners are considered NPs, rather than DPs. It seems clear that an NP can refer
to a concrete entity (e), but if we consider the determiner to be the head of the phrase,
it is not clear what the reference would be.

36 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Semantic Types: Adjectives

Similar to common nouns, adjectives are considered to be
of type 〈e,t〉. The same argument applies: they require a
concrete entity (e) to form a basic existential statement (with
a copular) which can be true or false.

t

e

Midge

〈e,t〉

(is) happy

Note: We are not dealing with NPs here where the adjective modifies a noun as in
happy dog. This can only be dealt with when we extend the analyses to Lambda
calculus.

37 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Semantic Types: Adverbs

Adverbs are considered type 〈〈e,t〉, 〈e,t〉〉. Note that similar
as for determiners, this is a logical consequence of the
definition of other types, i.e. the definition of a one-place
predicate modified by an adverb.

S

NP

N

Midge

VP

V

runs

Adv

fast

t

e

Midge

〈e,t〉

〈e,t〉

runs

〈〈e,t〉, 〈e,t〉〉

fast

38 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

Summary: Semantic Types

Type of Expression Semantic Type
Proper names e
Sentences t
Nouns 〈e,t〉
Adjectives 〈e,t〉
One-Place Predicates 〈e,t〉
Two-Place Predicates 〈e, 〈e,t〉〉
Three-Place Predicates 〈e, 〈e, 〈e,t〉〉〉
Determiners 〈〈e,t〉,e〉
Adverbs 〈〈e,t〉, 〈e,t〉〉

39 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

References



Section 1: Recap
of Lecture 21

Section 2:
Valency in Syntax
and Semantics

Section 3: Formal
Composition

Section 4:
Translating
Syntactic into
Semantic Trees

References

References
Kearns, Kate (2011). Semantics. Second edition. Palgrave Macmillan.

Kroeger, Paul R. (2019). Analyzing meaning. An introduction to semantics and
pragmatics. Second corrected and slightly revised version. Berlin: Language Science
Press.

Zimmermann, Thomas E. & Sternefeld, Wolfgang (2013). Introduction to semantics.
An essential guide to the composition of meaning. Mouton de Gruyter.

41 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen



Thank You.
Contact:

Faculty of Philosophy
General Linguistics
Dr. Christian Bentz
SFS Wihlemstraße 19-23, Room 1.24
chris@christianbentz.de
Office hours:
During term: Wednesdays 10-11am
Out of term: arrange via e-mail

42 | Syntax & Semantics, WS 2019/2020, Bentz c© 2012 Universität Tübingen


	Section 1: Recap of Lecture 21
	Section 2: Valency in Syntax and Semantics
	Section 3: Formal Composition
	Semantic Types
	Semantic Functions

	Section 4: Translating Syntactic into Semantic Trees
	References

