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Frege’s Original Statement

[...] If you collect, for instance, all notions
[Begriffe], which have the property of
denoting just a single object, under another
notion, then the uniqueness is the property
of this other notion. For example, the
notion “earth’s moon” would fall under this
other notion, but not the celestial object
itself. Hence, you can have a given notion
fall under another notion, a notion of
second order so to speak. [...]

Frege (1884), p. 65 (paragraph 53).
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Beyond Predicate Logic

We have seen that predicate logic is an extension of
propositional logic, by introducing predicates and
quantifiers. Predicate logic might itself be superseded by
another logical system, called second-order logic.
Gamut, L.T.F (1991). Volume 1, p. 168.

Take the following English sentences:

(1) Mars is red.
(2) Red is a color.
(3) Mars has a color.
(4) John has at least one thing in common with Peter.

How can we translate these into logical expressions?
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Second-Order Predicates
To circumvent this discrepancy, we can construe the
predicate x is a color not as a property, but as a property of
properties. C then represents a so-called second-order
property, i.e. a second-order predicate over the first-order
predicate x is red.

Instead of
(5) Cr (Cx: x is a color, r: red),

we then get
(6) CR (CX: X is a predicate with the property of being a

color, Rx: x is red)
Note: We introduce two new sets of symbols here
compared to standard predicate logic, a) the set of
second-order predicates

6 | Semantics & Pragmatics, SoSe 2023, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 6

Section 2:
Beyond Standard
Logic

Section 3: The
Theory of Types

Section 4: Syntax
of Type-Theoretic
Languages

Section 5:
Semantics of
Type-Theoretic
Languages

Summary

References

Second-Order Logic

A second-order logic language L′ is then an extension to a
standard predicate logic language L, then also referred to as
first-order logic language, by adding second-order
predicates to L.

Further Examples:

(7) ∃X(CX ∧ Xm) (English sentence: “Mars has a color.”)
(8) ∃X(Xj ∧ Xp) (English sentence: “John has at least

one thing in common with Peter.”)
(9) ∃X (XR ∧ XG) (English sentence: “Red has

something (a property) in common with green.”)
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Vocabulary (special to Second-Order Logic)
The vocabulary extensions to fit second-order logic requirements are:

I A (potentially infinite) supply of first-order predicate variables
(e.g. X, Y, Z, etc.), which are necessary to quantify over first-order
predicates,

I a (potentially infinite) supply of second-order predicate
constants (e.g. A, B, C, etc.).

If we wanted to take it even at a higher-order level we could also have:

I a (potentially infinite) supply of second-order predicate variables
(e.g. X , Y, Z, etc.) to stand in for second-order predicates.
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The Syntax: Recursive Definition
Given the vocabulary of L we then define the following clauses to create
formulas of L:

(i) If A is an n-ary first-order predicate letter/constant in L, and
t1, . . . , tn are individual terms in L, then At1, . . . , tn is an (atomic)
formula in L;

(ii) If X is a [first-order] predicate variable and t is an individual term in
L, then Xt is an atomic formula in L;

(iii) If A is an n-ary second-order predicate letter/constant in L, and
T1, . . . ,Tn are first-order unary predicate constants, or predicate
variables, in L, then AT1, . . . ,Tn is an (atomic) formula in L;

(iv) If φ is a formula in L, then ¬φ is too;

(v) If φ and ψ are formulas in L, then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and
(φ↔ ψ) are too.
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The Syntax: Recursive Definition
Given the vocabulary of L we then define the following clauses to create
formulas of L:

(vi) If x is an individual variable φ is a formula in L, then ∀xφ and ∃xφ
are also formulas in L;

(vii) If X is a [first-order] predicate variable, and φ is a formula in L, then
∀Xφ and ∃Xφ are also formulas in L;

(viii) Only that which can be generated by the clauses (i)-(vii) in a finite
number of steps is a formula in L.

Gamut, L.T.F (1991). Volume 1, p. 170.

Note: In the above clauses (i) and (ii), the word “term” is used, which
has not been defined by us before. In the context here, suffices to say
that it includes both constants and variables (of constants), i.e. a, b, c,
etc. and x, y, z, etc.
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Examples of Valid and Invalid Formulas

Formula
Aa X
Ax X
Axy X
Xa X
Xx X
AA X
Xa→ ¬Xb X
∀X∀x(Xa→Axy) X

x x
X x
Xab x
∀(Xa) x

Rule Applied
(i)
(i)
(i)
(ii)
(ii)
(iii)
(ii), (iv) and (v)
(i),(ii), (v), (vi), and (vii)

–
–
–
–
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Beyond Standard Logic

Throughout the last lectures we have seen that propositional
logic is superseeded by first-order predicate logic, while
this is in turn superseeded by second-order predicate logic.
Propositional logic and predicate logic are typically grouped
together as Standard Logic.
As we move from propositional to predicate logic, and then
beyond standard logic, we increasingly tease apart
sentences into their component parts.
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Example

All animals that live in the jungle have a color.

Propositional logic:
p

First-order predicate logic:
∀x((Ax ∧ Jx)→ Cx)
Translation key: Ax: x is an animal; Jx: x lives in the jungle; Cx: x has a
color.

Second-order predicate logic:
∀x(∃X((AX ∧ Xx) ∧ Jx)→ ∃Y(Yx ∧ CY))
Translation key: AX: x is a property (type of animal) which has the
property of being an animal; Jx: x lives in the jungle; CX: X is a property
(a particular color) which has the property of being a color.
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The Problem of Semantic Compositionality

However, in both first- and second-order logic, there are still
no tools to get to grips with frequent compositional
structures in natural language:

I adjective-noun combinations
I adverb-verb combinations
I article-noun combinations
I preposition-NP combinations
I etc.
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Example: Adjectives and Nouns

Adjectives and nouns frequently – but not always –
combine to yield compound expressions in which the
compound meaning is a combination of the individual
meanings (e.g. pink elephant).

(10) Jumbo is a pink elephant.
Predicate Logic: Ej ∧ Pj

(11) Jumbo is a reliable elephant.
Predicate Logic: Ej ∧ Rj

(12) Jumbo is a small elephant.
Predicate Logic: Ej ∧ Sj
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Discussion Point
Would you consider these pairs of English sentences as
equivalent in their meaning?

I Jumbo is a pink elephant/Jumbo is pink and Jumbo is
an elephant.

I Jumbo is a reliable elephant/Jumbo is reliable and
Jumbo is an elephant.

I Jumbo is a small elephant/Jumbo is small and Jumbo is
an elephant.

Why? Why not?
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Adjectives and Nouns
In the first case, the predicate logic expression might reflect the English
sentence correctly. In the last example, namely, when a relative
adjective (e.g. small, big, fast, slow, etc.) is used, the English sentence
is misrepresented, since Jumbo might be small for an elephant, but not
small in general. The adjective here modifies the noun and results in a
new predicate small elephant.
Gamut (1991), Volume 2, p. 77.

(13) Jumbo is a pink elephant.
Predicate Logic: Ej ∧ Pj

(14) Jumbo is a reliable elephant.
Predicate Logic: Ej ∧ Rj

(15) Jumbo is a small elephant.
Predicate Logic: Ej ∧ Sj
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Example: Adverbs and Verbs

Adverbs and verbs likewise combine to yield compound
expressions. Again, the available predicate logic translation
falls short of the actual meaning of walking quickly. The
adverb modifies the verb and creates a new predicate.

(16) Jumbo is walking quickly.
(17) Jumbo is walking and Jumbo is quick.

Predicate logic: Wj ∧ Qj

Gamut (1991), Volume 2, p. 77.
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Types of Expressions
There is a long (potentially infinite) list of types of expressions which
we might want to represent in our logical language in order to capture
the different combinatorial possibilities we find in natural languages.

Kind of expression

Individual expression
One-place first-order predicate
Two-place first-order predicate
Three-place first-order predicate
Sentence
Sentential modifier
Function
Predicate modifier
One-place second-order predicate
Two-place second-order relation
etc.

Examples

John, Jumbo
walks, red, loves Mary
loves, lies between Amsterdam and
lies between (and)
John walks, John loves Mary
not
the father of
quickly, beautifully, fast
is a color
is a brighter color than
etc.
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The Theory of Types

How can we represent this potentially infinite number of
expressions while preserving their internal structure and
combinatorial relationships? – A logical system developed
to fit this requirement is the so-called theory of types which
was developed by Bertrand Russell as a remedy for
paradoxes encountered in set theory.
Gamut (1991), Volume 2, p. 78.

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

← 3rd Century Propositional Logic Predicate Logic

Second-Order Logic

Type Theory
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Russell’s Paradox

Russell (1908), p. 222.
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Historical Note: Russell’s Paradox

I There are sets which contain themselves, e.g. U = {x |x = x},
which is called the universal set, and for which it holds that U ∈ U.
It contains everything that exists, since everything is equal to itself.

I However, most familiar sets do not contain themselves, e.g. the set
of natural numbers N = {1,2,3, ...}, for which N /∈ N, since a set is
not a natural number.

I We thus might want to define the set of entities which are not
members of themselves R = {x |x /∈ x}. A paradoxical question
arises: is R a member of itself or not?

I Consider the so-called Barber Paradox as a more intuitive
illustration: Assume a barber shaves all those who do not shave
themselves. – Does the barber shave himself?

Gamut (1991), Volume 2, p. 78.
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Historical Note: Russell’s Solution
Each entity is assigned a type which represents the “level”
of the logical language where the logical expression is
located at. For instance, a natural number n is an individual
entity. The set of natural numbers N, on the other hand, is of
the type “set of individual entities”.
The membership relation is then defined to only apply to
logical expressions which are exactly one level apart.
Hence, n ∈ N is a valid expression in the logical language of
types, while N ∈ N is not.
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Type Theory Applied to Language

“Linguistic expressions are classified into their semantic
types according to the kind of denotation they have. The
two most basic denotation types are type e, the type of
entities, and type t, the type of truth values.”
Kearns (2011). Semantics, p. 57.

Type of expression Type of extension Semantic type Example
proper name individual (entity) e JPaulKs=Paul McCartney
... ... ... ...
sentence truth value t JPaul is happyKs ∈ {0,1}
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Definition: The Syntax of Types

For the set of types T we define that:
(i) e, t ∈ T,
(ii) if a,b ∈ T, then 〈a,b〉 ∈ T,
(iii) nothing is an element of T except on the basis of

clauses (i) and (ii).
Gamut (1991), Volume 2, p. 79.

Note: a and b above are variables which stand in for all kinds of types.
This means we can create an infinite number of types by recursively
applying clause (ii). For example:

Applying (ii) to a = e and b = t yields 〈e, t〉
Applying (ii) to a = 〈e, t〉 and b = t yields 〈〈e, t〉, t〉
Applying (ii) to a = e and b = 〈〈e, t〉, t〉 yields 〈e, 〈〈e, t〉, t〉〉
etc.
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Examples of Valid and Invalid Types

e X
t X
〈e, t〉 X
〈t ,e〉 X
〈t , 〈t ,e〉〉 X
〈〈t , 〈t ,e〉〉, t〉 X

et x
e, t x
〈e,e, t〉 x
〈e, 〈e, t〉 x

Note: The usage of left and right ankled brackets as defined by clause
(ii) results in a strict binarization of the internal structure of types, i.e.
at each level of embedding we always have an ordered pair of more
basic types.
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Definition: Functional Application

How do we derive one type of expression from another?
“[...] if α is an expression of type 〈a,b〉 and β is an
expression of type a, then α(β) is of type b.”
Gamut (1991), Volume 2, p. 79.

Examples
If α = 〈e, t〉 and β = e then α(β) = t .
If α = 〈〈e, t〉, 〈e, t〉〉 and β = 〈e, t〉 then α(β) = 〈e, t〉.
If α = 〈t , 〈t ,e〉〉 and β = t then α(β) = 〈t ,e〉.
However,
If α = 〈t , 〈t ,e〉〉 and β = 〈t ,e〉 then α(β) is not defined.
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Example: Recursive Application

e

〈〈e,t〉,e〉 〈e,t〉

〈e, 〈e,t〉〉 e

〈〈e,t〉,e〉 〈e,t〉

〈〈e,t〉, 〈e,t〉〉 〈e,t〉

Note: Binarization does not mean that there are only a maximum of two
components in each overall tuple. Instead there can be infinitely many
2-tuple embeddings. But each individual tuple can only have two
components. Hence, we can built more complex semantic types out of
the two basic types e and t.
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Functional Application
in Natural Language Semantics

“[...] a function binds arguments together into a statement.
From this insight, Frege proposed that all semantic
composition is functional application. Functional
application is just the combination of a function with an
argument.”
Kearns (2011), p. 58.

Note: This means that in a type-theoretic logical language, the
distinction between predicates and functions is irrelevant. All structure
building is based on functional application.
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Semantic Types: Individuals

An individual, represented by a logical constant of the
semantic type e, corresponds to, for instance, a proper
noun (N) in natural language.

Syntactic Tree

N

Midge

Type-Theoretic Tree

e

Midge

This and the following examples are based on Kearns (2011).
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Semantic Types: Sentences

Logical formulae of the semantic type t correspond to
sentences (S) in natural language.

S

Midge sees Mary

t

Midge sees Mary
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Semantic Types: One-Place Predicates

An intransitive verb requires one argument to be filled in
order to form a full sentence, hence it is of the type 〈e,t〉.
Remember that the argument is on the left side of the tuple
(ordered pair), hence the component of type entity (e) is left.

S

NP

N

Midge

VP

V

grins

t

e

Midge

〈e,t〉

grins
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Semantic Types: Two-Place Predicates

A transitive verb requires two arguments to be filled in
order to form a full sentence, hence it is of the type 〈e,〈e,t〉〉.

S

NP

N

Midge

VP

V

likes

NP

N

Mary

t

e

Midge

〈e,t〉

〈e, 〈e,t〉〉

likes

e

Mary
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Semantic Types: Three-Place Predicates

A ditransitive verb requires three arguments to be filled in
order to form a full sentence, hence it is of the type
〈e,〈e,〈e,t〉〉〉.

S

NP

N

Midge

VP

VP

V

gave

NP

N

Mary

NP

N

Jumbo

t

e

Midge

〈e,t〉

〈e, 〈e,t〉〉

〈e, 〈e, 〈e,t〉〉〉

gave

e

Mary

e

Jumbo
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Semantic Types: Common Nouns
Common nouns are of type type 〈e,t〉. This might seem counterintuitive
at first sight, but the idea here is that nouns are essentially like
one-place predicates, in the sense that they require a concrete entity
(e) to form a basic existential statement (with a copular) which can be
true or false.

S

NP

N

Midge

VP

V

is

NP

DET

a

N

dog

t

e

Midge

〈e,t〉

is a dog

Note: This corresponds to the predicate logic formulation Dm, where the copula and the indefinite
determiner are dropped. As pointed out earlier, the copula is a controversial case, and the syntactic tree
given here assumes that the copula is heading a VP, which is not uncontroversial.
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Alternative Analysis?

S

NP

N

Midge

VP

V

is

NP

DET

a

N

dog

t

e

Midge

〈e,t〉

〈e, 〈e,t〉〉

is

e

〈〈e, t〉,e〉

a

〈e, t〉

dog

Note: This might seem like a valid alternative, but notice that the type of a dog has to
be e now, meaning that it is an individual, rather than a set of individuals. So this would
break with the fundamental definition that indeterminate expressions have sets as their
extensions. Also, the indefinite determiner would then be of the same type as the
definite determiner (see next slide). See also Kearns (2011), p. 149 for a discussion of
specific and non-specific readings of indefinite descriptions.
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Semantic Types: NPs and Determiners

NPs are of type e, i.e. referring to a concrete entity. Note
that it follows from this definition and the definition of
common nouns above that determiners then have to be of
type 〈〈e,t〉, e〉.

NP

D

the

N

dog

e

〈〈e,t〉,e〉

the

〈e,t〉

dog
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Semantic Types: Adjectives
(Existential Statements)

Similar to common nouns, adjectives are considered to be
of type 〈e,t〉. The same argument applies: they require a
concrete entity (e) to form a basic existential statement (with
a copular) which can be true or false.

S

NP

N

Midge

VP

V

is

AP

A

happy

t

e

Midge

〈e,t〉

is happy
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Semantic Types: Adjectives
(Predicate Modifiers)

On the other hand, adjectives can also serve as predicate
modifiers. In this case, they have to be defined as being of
the type 〈〈e,t〉, 〈e,t〉〉 (same as adverbs below).
Gamut (1991), Volume 2, p. 77.

t

e

Midge

〈e,t〉

〈〈e,t〉, 〈e,t〉〉

is a happy

〈e,t〉

dog
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Semantic Types: Adverbs

Adverbs are considered type 〈〈e,t〉, 〈e,t〉〉. Note that similar
as for determiners, this is a logical consequence of the
definition of other types, i.e. the definition of a one-place
predicate modified by an adverb.

S

NP

N

Midge

VP

V

runs

Adv

fast

t

e

Midge

〈e,t〉

〈e,t〉

runs

〈〈e,t〉, 〈e,t〉〉

fast
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Summary: Types of Expressions
There is a long (potentially infinite) list of types of expressions which
we might want to represent in our logical language in order to capture
the different combinatorial possibilities we find in natural languages.

Type

e
〈e, t〉
〈e, 〈e, t〉〉
〈e, 〈e, 〈e, t〉〉〉
t
〈t , t〉
〈e,e〉
〈〈e, t〉, 〈e, t〉〉
〈〈e, t〉, t〉
〈〈e, t〉, 〈〈e, t〉, t〉〉
etc.

Kind of expression

Individual expression
One-place first-order predicate
Two-place first-order predicate
Three-place first-order predicate
Sentence
Sentential modifier
Function (entitiy to entity)
Predicate modifier
One-place second-order predicate
Two-place second-order predicate
etc.

Examples

John, Jumbo
walks, red, loves Mary
loves, sees
lies between (and)
John walks, John loves Mary
not
the father of
quickly, beautifully, fast
is a color
is a brighter color than
etc.

Based on Gamut (1991), Volume 2, p. 86.
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Vocabulary
(Shared)

The shared part of the vocabulary consists of:
I For every type a, an infinite set VARa of variables of

type a;1

I the usual connectives ∨, ∧,→,↔, ¬;
I the quantifiers ∀ and ∃;
I two brackets ‘(’ and ‘)’;
I the symbol for identity ‘=’.2

Gamut (1991), Volume 2, p. 80.

1For example, for the type of individuals e we can define an infinite set of variable
symbols x, y, z, etc. of this type (just as for predicate logic). Likewise, for the type of a
one-place predicate 〈e, t〉 we can also define an infinite set of one-place first order
predicate variables X, Y, Z, etc. (just as for predicate logic), and so on for every type.

2Optional as before, depending on whether we want to use expressions which
reflect equations.
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Vocabulary
(Characteristic)

The characteristic part of the vocabulary for a particular
type-theoretic language consists of:
I for every type a, a (possibly empty) set CONL

a of
constants of type a.3

Note: It is important to keep constants of type a (ca) and
variables of type a (va) appart. A notational difference to
predicate logic languages is that the type of a constant or
variable can be indicated by an index.

3For example, for the type of individuals e we can define an infinite set of constant
symbols a, b, c, etc. of this type (just as for predicate logic). Likewise, for the type of a
one-place predicate 〈e, t〉 we can also define an infinite set of one-place first order
predicate constants A, B, C, etc. (just as for predicate logic), and so on for every type.
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Notation for Variables and Constants
As before, we will use the following notations to distinguish
typographically between different variables and constants at
different orders:

I Constants for entities: a, b, c, etc.
I Variables over entities: x, y, z, etc.
I First-order predicate constants: A, B, C, etc.
I Variables over first-order predicates: X, Y, Z, etc.
I Second-order predicate constants: A, B, C, etc.
I (Second-order predicate variables: X , Y, Z, etc.)4

4These are just added for completeness here. We generally don’t go into orders
higher than two in exercises and examples.
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The Syntax: Recursive Definition
The clauses for the syntax of a type-theoretic language are then:

(i) If α is a variable or a constant of type a in L [i.e. va or ca], then α is an expression
of type a in L.

(ii) If α is an expression of type 〈a,b〉 in L, and β is an expression of type a in L, then
(α(β)) is an expression of type b in L.

(iii) If φ and ψ are expressions of type t in L (i.e. formulas in L), then so are ¬φ,
(φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and (φ↔ ψ).

(iv) If φ is an expression of type t in L and v is a variable (of arbitrary type a), then
∀vφ and ∃vφ are expression of type t in L.

(v) If α and β are expressions in L which belong to the same (arbitrary) type, then
(α = β) is an expression of type t in L.

(vi) Every expression L is to be constructed by means of (i)-(v) in a finite number of
steps.

Gamut (1991), Volume 2, p. 81-82.
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First-Order Predicate Logic
(i) If A is an n-ary predicate letter in the

vocabulary of L, and each of t1, . . . , tn is a
constant or a variable in the vocabulary of L,
then At1, . . . , tn is a formula in L.

(ii) If φ is a formula in L, then ¬φ is too.

(iii) If φ and ψ are formulas in L, then (φ ∧ ψ),
(φ ∨ ψ), (φ→ ψ), and (φ↔ ψ) are too.

(iv) If φ is a formula in L and x is a variable, then
∀xφ and ∃xφ are formulas in L.

(v) Only that which can be generated by the
clauses (i)-(iv) in a finite number of steps is a
formula in L.

Type-Theoretic Logic
(i) If α is a variable or a constant of type a in L

[i.e. va or ca], then α is an expression of type
a in L.

(ii) If α is an expression of type 〈a,b〉 in L, and β
is an expression of type a in L, then (α(β)) is
an expression of type b in L.

(iii) If φ and ψ are expressions of type t in L (i.e.
formulas in L), then so are ¬φ, (φ ∧ ψ),
(φ ∨ ψ), (φ→ ψ), and (φ↔ ψ).

(iv) If φ is an expression of type t in L and v is a
variable (of arbitrary type a), then ∀vφ and
∃vφ are expression of type t in L.

(v) Every expression L is to be constructed by
means of (i)-(v) in a finite number of steps.
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Examples of Valid and Invalid Expressions

Definition of Types

Assume j is of type e (i.e. representing an entity), x is of type e, A is of
type 〈e, t〉 (i.e. a first order one-place predicate), B is of type 〈e, 〈e, t〉〉
(i.e. a first-order two-place predicate), and C is of type 〈〈e, t〉, t〉 (i.e. a
second-order one-place predicate).

Expressions

j X
A X
A(j) X
(B(j))(x) X alternative notation: B(j)(x)
C(B(j)) X
A(j) ∧ C(A)X
∀xA(x)X

Aj x
B(A) x
∀xC(x) x

Clause Applied

(i)
(i)
(i) and (ii)
(i) and (ii)
(i) and (ii)
(i), (ii), and (iii)
(i), (ii), and (iv)

–
–
–
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Important: Expressions and Formulas

Note that in the definitions above, Gamut use the term
expression instead of formula or sentence (which were
used before in predicate logic). They further specify the
difference:
“The inductive definition of the formulas is more complicated
than in predicate logic. For what we have to give is a
general definition of what is to be an expression of a type a
∈ T, the formulas are then those expressions which are of
the particular type t.”
Gamut (1991), Volume 2, p. 81.
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Imporant Difference to Predicate Logic
Assume j of type e refers to Jumbo, m of type e refers to Maya, B is of type 〈e, 〈e, t〉〉,
and is reflecting the English two-place predicate “to befriend”. The English sentence
Jumbo befriends Maya would then be translated as:

Predicate Logic: Bjm
Type-Theoretic Logic: (B(m))(j) or alternatively B(m)(j)5

Some notable points:

I While the predicate logic formula Bjm combines all three elements B, m, and j
together in a single step, in the type-theoretic account, we are bound to strictly
binary functional application. In the case of two-place predicates, this means
that the predicate/function is applied first to one of the arguments, i.e. B(m), and
then, in the second step, the outcome is applied to the next argument, i.e.
(B(m))(j).

I Note that the latter account reflects the binary tree structure posed in (some)
syntactic frameworks, whereas the former has a flat structure.

I Also, the order of the arguments is inverted here. It is generally assumed that
the predicate is first applied to the object of the natural language sentence, and
then to the subject.

5We leave away the outermost brackets here. Gamut (1991), p. 82 suggest to also
drop the brackets around B(m) and hence get the alternative simplified writing B(m)(j).

52 | Semantics & Pragmatics, SoSe 2023, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 5: Semantics of Type-Theoretic
Languages



Section 1: Recap
of Lecture 6

Section 2:
Beyond Standard
Logic

Section 3: The
Theory of Types

Section 4: Syntax
of Type-Theoretic
Languages

Section 5:
Semantics of
Type-Theoretic
Languages

Summary

References

Truth Valuation
As seen before for other logical languages, the semantic side of
type-theoretic languages consists of the valuation of truth given a
syntactically valid expression.

Example
Assume walks is represented by W of type 〈e, t〉. Further, Jumbo is
represented by the constant j of type e. We thus have a valid
truth-theoretic expression W(j) of type t (i.e. a formula) representing
Jumbo walks.

To evaluate the truth of W(j) we need to define a set of all relevant
entities D (the domain) with members d, and a subset W ⊆ D whose
members can be said to walk (i.e. j ∈W). We then define an
interpretation function I for which it holds that:

I(W )(d) = 1 iff d ∈W ; and I(W )(d) = 0 iff d /∈W . (1)

I(W) is a so-called characteristic function of W (over D).
Gamut (1991), Volume 2, p. 83-87.
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Truth Valuation
However, the complexity of defining interpretation functions for all kinds
of different types of expressions (see table below from Gamut) is beyond
the scope of this course.
Gamut (1991), Volume 2, p. 86.

Type

e
〈e, t〉
〈e, 〈e, t〉〉
〈e, 〈e, 〈e, t〉〉〉
t
〈t , t〉
〈e,e〉
〈〈e, t〉, 〈e, t〉〉
〈〈e, t〉, t〉
〈〈e, t〉, 〈〈e, t〉, t〉〉
etc.

Interpretation

Entity
Function from entities to truth values, i.e. characteristic function
Function from entities to sets of entities
Function from entities to functions from entities to sets of entities
Truth value
Function from truth values to truth values
Function from entities to entities
Function from sets of entities to sets of entities
Characteristic function of a set of sets of entities
Function from sets of entities to sets of sets of entities
etc.
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Summary

I The theory of types enables us to assign a type to any
kind of natural language structure.

I Functional applications of expressions of certain
types to one another then enable us to represent the
rich combinatoriality of natural language structures.

I Truth valuations are possible via particular
interpretation functions defined for different types of
expressions.
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