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Example

Article 1
All human beings are born free and equal in dignity
and rights. They are endowed with reason and
conscience and should act towards one another in a
spirit of brotherhood.
Universal Declaration of Human Rights (UDHR) in English

Raeiclt 1
Rll humrn btings rat boan fatt and tqurl in digniey
rnd aighes. Ehty rat tndowtd wieh atrson rnd
conscitnct rnd should rce eowrads ont rnoehta in r
spiaie of baoehtahood.
Universal Declaration of Human Rights (UDHR) in ???
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Three Levels of Communication Problems

I Level A: How accurately can
the symbols of communication
be transmitted? (The technical
problem.)

I Level B: How precisely do the
transmitted symbols convey the
desired meaning? (The
semantic problem.)

I Level C: How effectively does
the received meaning affect
conduct in the desired way?
(The effectiveness problem.)

Shannon & Weaver (1949). The
mathematical theory of communication, p. 4.
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Some Intuitive Terminology

I order↔ disorder
I regularity↔ irregularity
I predictability↔ unpredictability
I certainty↔ uncertainty
I choice↔ restriction


Entropy
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How does this relate to language?

“Where is the coin?”

“In the red box”

I The “alphabet” (here words) of the “language” they use does not
need more than 8 colour adjectives to disambiguate:

A = {yellow ,orange, red ,green,blue,purple,brown,black}
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Crucially: Certainty and Uncertainty in the Game

Note that in LA there is more uncertainty, more choice/possibility
than in LB. If we had to take a guess what the girl says next, then in LA

we have a uniform chance of 1
8 = 0.125 of being right, whereas in LB we

have a better chance of 6
16 = 3

8 = 0.375 if we guess “blue”.
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A more precise formulation

Given these definitions, the entropy is then defined as

H(X ) = −
∑
x∈X

p(x) log p(x). (1)

Notes:

I The logarithm is typically taken to the base 2, i.e. giving bits of
information. We will henceforth indicate this explicitely.

I In the original article by Shannon, there was also a positive
constant K before the summation sign, but henceforth it was mostly
assumed to be 1, and hence dropped.

I There are many alternative - notationally different, but conceptually
equivalent - formulations of the entropy. Shannon, for instance,
used H(p1,p2, ...,pN), which is mostly shortened to H(X ).
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Let’s apply this to Languages A and B

For reasons of simplicity let’s take the expected values and not actual
counts:

H(LA) = −(
1
8
× log2(

1
8
) +

1
8
× log2(

1
8
) + ...+

1
8
× log2(

1
8
)) = 31 (2)

H(LB) = −(
6

16
× log2(

6
16

) +
3
16
× log2(

3
16

) + ...+
1
16
× log2(

1
16

)) = 2.61 (3)
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1Note: the case where we have a uniform distribution of probabilities, i.e. all events
(adjectives here) are exactly equally likely, is the maximum entropy case. In this case,
the equation simplifies to log2(N). Such that here we have log2(8)=3.
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Two Major Problems

1. What is an information encoding “unit” in the
first place - and how does this effect the
results?

2. What is the “real” probability of letters, words,
sentences, or symbols more generally?
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Probability Distributions for Languages A and B

Language A : p(x) =
1
8
,with x ∈ {black ,blue, . . . , yellow}. (4)

Language B : q(x) = {〈black ,
1
16
〉, 〈blue,

6
16
〉, 〈brown,

1
16
〉,

〈green,
3
16
〉, 〈orange,

1
16
〉, 〈purple,

1
16
〉, 〈red ,

1
16
〉, 〈yellow ,

2
16
〉}.

(5)
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Note: There is a difference in the probabilities of occurrences of colour adjectives
between Language A and Language B. How big is this difference?
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Relative Entropy
(Kullback-Leibler distance/divergence)

“The relative entropy is a measure of the distance2 between
two distributions. [...] The relative entropy D(p||q) is a
measure of the inefficiency of assuming that the distribution
is q when the true distribution is p.”
Cover & Thomas (2006), p. 19.

The relative entropy between two probability mass functions
p(x) and q(x) is defined as

D(p||q) =
∑
x∈X

p(x) log2
p(x)
q(x)

. (6)

It can take values between 0 and∞. It is 0 if p = q.
2Note that it is not a ‘true’ distance measure, since it does not satisfy the triangle

inequality.
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Example

Assume the probabilities of Language A constitute the
probability mass function p(x), and the probabilities of
Language B the function q(x). We then have:

D(p||q) = 1/8 log2
1/8

1/16
+ 1/8 log2

1/8
6/16

+ 1/8 log2
1/8

1/16
+

1/8 log2
1/8

3/16
+ 1/8 log2

1/8
1/16

+ 1/8 log2
1/8

1/16
+ 1/8 log2

1/8
1/16

+

1/8 log2
1/8

2/16
∼ 0.35 bits per word.

(7)

Thus, there is relatively little difference in the probability
distributions of colour adjectives in these two languages.
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How does this relate to language?

In the example above, we compared two artificial languages
of the box game by using the relative entropy. Another way
of looking at it – which is arguably closer to a denotational
semantics point of view – is to consider the difference
between the “real” world situations (i.e. colored boxes), and
the language that transmits information about them (i.e. the
colour adjectives).
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The Cost of Miss-Information

“Where is the coin?”

“In the blue box”

Assume the “alphabet” of the “language” is still the same:

A = {yellow ,orange, red ,green,blue,purple,brown,black}

Assume they play the game 16 times. The probability of the coin being
in any of the boxes is still 1/8. However, half of the time the coin is in the
red box, the girl actually says it is in the blue box. Otherwise she is
faithful.
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Example

In the box game with miss-information we thus have a discrepancy
between the probability distribution of real colours of boxes (p(x)) and
the probabilities of colour adjectives denoting these boxes (q(x)). This
discrepancy can be measured by the relative entropy:

World : p(x) =
1
8
,with x ∈ {black ,blue, . . . , yellow}. (8)

Language : q(x) = {〈black ,
2

16
〉, 〈blue,

3
16
〉, 〈brown,

2
16
〉,

〈green,
2

16
〉, 〈orange,

2
16
〉, 〈purple,

2
16
〉, 〈red ,

1
16
〉, 〈yellow ,

2
16
〉}.

(9)

D(p||q) ∼ 0.05 bits per word (10)

Conclusion: The cost of miss-information is here 0.05 bits per word
(on average).
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Summary: Relative Entropy

I The relative entropy measures the discrepancy in
probability distributions over the same variable x, e.g.
p(x) and q(x).

I First possible application: calculate the discrepancy
between the probability distributions of elements of the
“alphabet” in two instances of language usage
(Language A and Language B above).

I Second possible application: calculate the
discrepancy between the probability distributions of real
world situations (coloured boxes), and the language
used to communicate about them (colour adjectives).
This is the communicative cost of miss-information.

19 | Semantics & Pragmatics, SoSe 2021, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 2

Section 2:
Relative Entropy

Section 3: Mutual
Information

Section 4:
Relation to
Meaning

Summary

References

Drawback
Since the relative entropy is defined over the same variable x , this
means that the “alphabet” between the systems compared has to be
exactly the same. If we had, for example, X = {black,blue,brown} and
Y = {black,blue}, then the relative entropy between the probability
distributions over these alphabets would be defined as

D(p||q) =∞. (11)

This is because we have to assume

q(brown) = 0. (12)

Cover & Thomas (2006), p. 19.
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Another Version of the Box Game
Imagine a version of the box game in which the girl
consistently uses the colour adjective blue instead of red,
such that the latter is actually not in her alphabet anymore.
Otherwise she names the correct colours.

“Where is the coin?”

“In the blue box”

Assume the “alphabet” of the “language” is then:

Y = {yellow ,orange,green,blue,purple,brown,black}
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We now have the situation described above, namely, the
alphabet of the “language” (here Y) does not fit the alphabet
of the “real world” (here X ) anymore. The relative entropy
would give us D(p||q) =∞ for p(x) and q(y).

Y = {yellow ,orange,green,blue,purple,brown,black}
X = {yellow ,orange, red ,green,blue,purple,brown,black}
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For ease of exposition, and for making later calculations
easier, let’s simplify this game to three boxes.

“Where is the coin?”

“In the blue box.”

Such that we have the alphabets

Y = {blue,black},
X = {red ,blue,black}.
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Assume we play the box game with the probability of the coin being in
any of the three boxes being uniform, i.e. 1

3. We thus get the probability
mass function for the “real world” variable x as

p(x) = {〈red,
1
3
〉, 〈blue,

1
3
〉, 〈black,

1
3
〉}. (13)

Since the girl consistently replaces “red” for “blue”, and is otherwise
faithful, we furthermore get the following conditional probability
function for a colour in the language (y)3 conditioned on a colour in the
real world (x):

p(y |x) = {〈(red|red),0〉, 〈(red|blue),0〉, 〈(red|black),0〉,
〈(blue|red),1〉, 〈(blue|blue),1〉, 〈(blue|black),0〉,

〈(black|red),0〉, 〈(black|blue),0〉, 〈(black|black),1〉}.
(14)

3For reasons of symmetry, we assume that for the variable y : p(red) = 0. In other
words, rather than not having a probability value at all, “red” is assigned 0 probability.
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Conditional Entropy

Given p(x) and p(y |x), we can define the so-called
conditional entropy of the random variable Y given the
random variable X as:

H(Y |X ) = −
∑
x∈X

p(x)
∑
y∈Y

p(y |x) log2 p(y |x) (15)

This gives the amount of information (in bits) which is
needed to describe the random variable Y (our language
production in the box game), conditioned on another
random variable X (the real world outcomes of where the
coin goes in the box game).

Cover & Thomas (2006), p. 17.
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Example: Calculating H(Y |X )

Given p(x) and p(y |x) defined for the box game above, we
thus get the conditional entropy as:

H(Y |X ) = −(p(red)× (p(red |red) log2 p(red |red)+
p(blue|red) log2 p(blue|red)+

p(black |red) log2 p(black |red))+

p(blue)× (p(red |blue) log2 p(red |blue)+
p(blue|blue) log2 p(blue|blue)+

p(black |blue) log2 p(black |blue))+

p(black)× (p(red |black) log2 p(red |black)+
p(blue|black) log2 p(blue|black)+

p(black |black) log2 p(black |black)))

(16)
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Further pluging the conditional proabilities of (14) into
Equation (16) gives us:

H(Y |X ) = −(1
3
× (0× log2(0) + 1× log2(1) + 0× log2(0))+

1
3
× (0× log2(0) + 1× log2(1) + 0× log2(0))+

1
3
× (0× log2(0) + 0× log2(0) + 1× log2(1)))

(17)

Note that we define 0× log2(0) = 0 (Cover & Thomas, 2006,
p. 14). Furthermore, it generally holds that 1× log2(1) = 0.
We thus actually get

H(Y |X ) = 0. (18)

Why is this?
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In words: the conditional entropy (i.e. uncertainty or choice)
of the language variable (Y ) given the real world variable
(X ) is 0 in our current version of the box game, meaning that
we know everything about Y by knowing X .
This is true, since we know:

I If the coin is in the red box, the girl will always say “blue”.

I If the coin is in the blue box, the girl will always say “blue”.

I If the coin is in the black box, the girl will always say “black”.

Hence, for every possible value of X we know exactly, i.e.
with probability 1, what the outcome is going to be in Y .
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Example: Calculating H(X |Y )

What if we calculate the conditional entropy for the real world outcomes
based on knowing the language production? The probability mass
function for the “language” variable y is

p(y) = {〈red,0〉, 〈blue,
2
3
〉, 〈black,

1
3
〉}. (19)

Since the girl consistently replaces “red” for “blue”, and is otherwise
faithful. We furthermore get the following conditional probability
function for a colour in the the real world scenario (x) conditioned on a
colour in language (y):

p(x |y) = {〈(red|blue),
1
2
〉, 〈(red|black),0〉,

〈(blue|blue),
1
2
〉, 〈(blue|black),0〉,

〈(black|blue),0〉, 〈(black|black),1〉}.

(20)
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Example: Calculating H(X |Y )

Given p(y) and p(x |y) defined for the box game above, we
thus get the conditional entropy as:

H(X |Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x |y) log2 p(x |y). (21)

And thus we have
H(X |Y ) = −(p(blue)× (p(red |blue) log2 p(red |blue)+

p(blue|blue) log2 p(blue|blue)+
p(black |blue) log2 p(black |blue))+

p(black)× (p(red |black) log2 p(red |black)+
p(blue|black) log2 p(blue|black)+

p(black |black) log2 p(black |black))).

(22)
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Further pluging the conditional proabilities of (20) into
Equation (22) gives us:

H(X |Y ) = −(2
3
× (

1
2
× log2(

1
2
) +

1
2
× log2(

1
2
) + 0× log2(0))+

1
3
× (0× log2(0) + 0× log2(0) + 1× log2(1))).

(23)

We thus get

H(X |Y ) =
2
3
∼ 0.67 bits. (24)

Conclusion: This means that there is some conditional
entropy (uncertainty or choice) in the real world outcome (X)
given we know the language production (Y). Again, this
makes sense given that there is an ambiguity in the girls
language: when she says “blue”, the coin could either be in
the blue or the red box (with equal probability).
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Mutual Information
In the last step, we can now define the mutual information
between X and Y as

I(X ;Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ) (25)

Note that while the conditional entropies H(X |Y ) and
H(Y |X ) are asymmetrical, i.e. can give different values (as
we have seen above), the mutual information is symmetrical.
The mutual information is the reduction in the uncertainty
of X given Y .4
Cover & Thomas (2006), p. 21.

4There is an alternative – but equivalent – way of defining mutual information with
reference to joint probabilities of X and Y rather than conditional probabilities.
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Example: Calculating I(X ;Y )

In the last lecture we have seen how to calculate the entropy
of variables X and Y based on the probabilities of their
possible outcomes. For our current version of the box game,
p(x) and p(y) were defined above. This yields

H(X ) = −(1
3
log2(

1
3
)+

1
3
log2(

1
3
)+

1
3
log2(

1
3
)) ∼ 1.58 bits, (26)

as well as

H(Y ) = −(0 log2(0) +
2
3
log2(

2
3
) +

1
3
log2(

1
3
)) ∼ 0.92 bits. (27)

While above we have established that H(X |Y ) = 0.67 bits,
and H(Y |X ) = 0 bits.

34 | Semantics & Pragmatics, SoSe 2021, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 2

Section 2:
Relative Entropy

Section 3: Mutual
Information

Section 4:
Relation to
Meaning

Summary

References

If we plug these results into the mutual information formula,
we get

I(X ;Y ) = 1.58− 0.67 ∼ 0.92 bits. (28)

We come to the conclusion that there is almost one bit of
uncertainty reduction in the language given the real world
outcomes of the box game, and the other way around.
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Interpretation of Mutual Information

Let’s look at the mutual information equation again from
the perspective of X , i.e. the real world outcomes of the
box game:

I(X ;Y ) = H(X )− H(X |Y ) (29)

There are several points to be noted:
I Note that the conditional entropy is strictly positive or

zero, i.e. H(X |Y ) ≥ 0.
I The entropy is itself also strictly positive or zero, i.e.

H(X ) ≥ 0.
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Maximum Mutual Information
From this it follows that the maximum of mutual
information is the entropy H(X ), i.e.

I(X ;Y ) ≤ H(X ). (30)

This would be the case if the language of the box game was
so precise that there is no conditional entropy left, i.e.
H(X |Y ) = 0.

However, as we have seen in our box game example, this is
not the case. There is some ambiguity of the colour term
“blue” in the language. Hence, the uncertainty about the real
world outcomes is reduced by 0.92 bits given the language,
but there are 0.67 bits of uncertainty left.
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Minimum Mutual Information
The minimal mutual information is defined as 0. When is
this the case? – When it holds that

H(X ) = H(X |Y ). (31)

This would be the case if the language of the box game did
not give us any information at all about the outcomes of the
real world, meaning that the two variables X and Y are
completely statistically independent.
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Implications for Natural Language
Imagine a language that always maps exactly one color adjective with
exactly one box game outcome. In this case, we have maximum
mutual information I(X ;Y ), since the conditional entropy is
H(X |Y ) = H(Y |X ) = 0. However, as the number of colours increases,
this would require a potentially infinite number of colour adjectives to
cover all possible colours. In fact, the entropy H(Y ) of the colour
adjectives can be conceptualized as a cost of learning.

Ferrer-i-Cancho & Diaz-Guilera (2007).
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Implications for Natural Language
Terms such as ambiguity, vagueness, indeterminacy are often
associated with negative connotations. However, from an
information-theoretic point of view these might be necessary aspects of
human communication, in order to find a compromise between
minimum learning cost H(Y ), and maximum expliciteness I(X ;Y ).

Ferrer-i-Cancho & Diaz-Guilera (2007).
Piantadosi et al. (2012).

41 | Semantics & Pragmatics, SoSe 2021, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 2

Section 2:
Relative Entropy

Section 3: Mutual
Information

Section 4:
Relation to
Meaning

Summary

References

Does this relate to Natural Language?

Two major hypotheses:
1. There is a finite inventory

of 11 colors from which
languages pick their basic
terms.

2. While not all languages
name the same set of
colors, there are universal
implicational hierarchies of
which colors are picked.

Berlin & Kay (1969). Basic color terms.
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Basic Color Terms: Implicational Hierarchy

Berlin & Kay (1969). Basic color terms.
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[http://www.icsi.berkeley.edu/wcs/]
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Basic Color Terms: Implicational Hierarchy

Moravcsik (2012). Introducing language typology, p. 57.
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Information-Theoretic Analyses

Gibson et al. (2017).

https://glottolog.org
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Summary

I Mutual information is defined as the reduction in entropy
(uncertainty or choice) in a variable X given another variable Y .

I If X is conceptualized as events in the “real world”, and Y as
language performance, then we can use mutual information to
measure how much language tells us about the world.

I Since mutual information is calculated as the difference between
the entropy of a variable X and the conditional entropy given
another variable H(X |Y ), there is a trade-off between minimizing
the entropy, while keeping the mutual information high.

I While entropy is not to be equated with meaning, it is the upper
bound on the mutual information between forms and
meanings – if we take a denotational view point on meaning.
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Thank You.
Contact:

Faculty of Philosophy
General Linguistics
Dr. Christian Bentz
SFS Wihlemstraße 19-23, Room 1.24
chris@christianbentz.de
Office hours:
During term: Wednesdays 10-11am
Out of term: arrange via e-mail
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