
Faculty of Philosophy
General Linguistics

Semantics & Pragmatics SoSe 2020
Lecture 9: Formal Semantics (Summary)

19/05/2020, Christian Bentz



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Updated Schedule (2020)

21/04/2020 Lecture 1 Organization & Introduction
23/04/2020 Lecture 2 Information Theory I
28/04/2020 Lecture 3 Information Theory II
30/04/2020 Lecture 4 Formal Semantics I: Propositional Logic
05/05/2020 Lecture 5 Formal Semantics II: Predicate Logic
07/05/2020 Lecture 6 Formal Semantics III: Second-Order Logic
12/05/2020 Lecture 7 Formal Semantics IV: Type Theory
14/05/2020 Lecture 8 Formal Semantics V: Lambda Calculus
19/05/2020 Lecture 9 Summary: Formal Semantics
21/05/2020 Ascension Day (Christi Himmelfahrt)
26/05/2020 Lecture 10 Applications & Current Research
28/05/2020 Lecture 11 Further Topics in Semantics: Modality

Pentecost Holidays (Pfingstferien)

2 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Updated Schedule (2020)

09/06/2020 Lecture 12 Further Topics in Semantics: Evidentiality
11/06/2020 Corpus Christi (Fronleichnam)
16/06/2020 Lecture 13 Introduction Pragmatics
18/06/2020 Lecture 14 Discourse Representation Theory I
23/06/2020 Lecture 15 Discourse Representation Theory II
25/06/2020 Lecture 16 Implicatures
30/06/2020 Lecture 17 Presupposition I
02/07/2020 Lecture 18 Presupposition II
07/07/2020 Lecture 19 Speech Acts I
09/07/2020 Lecture 20 Speech Acts II
14/07/2020 Lecture 21 Conversational Structure
16/07/2020 Lecture 22 Pragmatic Universals
21/07/2020 Lecture 23 Summary: Pragmatics
23/07/2020 Exam

3 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Q&A
Lecture 8 (λ-calculus)

I In the last example you provided on slide 32: shouldn’t
the lambda conversion step (right column) have the
lambda operator around the quantified formula? – Yes,
since we said that lambda-conversion is not possible
here, the lambda-operator should be left in place. I
corrected this:
∀X(X(a) ∧ X(b))(C) x
has to be
λX(∀X(X(a) ∧ X(b)))(C) x

4 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Q&A
Lecture 8 (λ-calculus)

I In the first example of slide 35, there is a closing bracket
missing. Would the missing bracket be before the
lambda arguments(?) as in λx(λy(L(y)(x)))(j)(b), or
should it reflect the scope of the lambda operator as in
λx(λy(L(y)(x))(j))(b)? – Yes, it has to be put as in the first
suggestion.

I On slide 13 example C(B(j)(x)). Isn’t this invalid since C
takes an argument of type 〈e, t〉, while B(j)(x) is of type
t? – Yes, that’s true. I corrected it to C(B(j)).

5 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Q&A
Lecture 8 (λ-calculus)

I Slide 32, in particular concerning the λ-Abstraction
expression λx(∃xF(x)→ S(x)). Conversion is here not
possible since x is bound in one instance by ∃.
However, if we change this to λx(∃yF(y)→ S(x)), then
conversion of x would be possible. But aren’t these two
λ-expressions equivalent? – It is correct that the latter
expression can be converted, while the former cannot
be converted. However, these two expressions cannot
be seen as necessarily equivalent, since for variables in
this logic language we cannot necessarily assume that
x = y. This is pointed out by Gamut (1991, Volume 2, p.
109), where they say that, for instance, ∃yRxy cannot be
assumed to necessarily be equivalent to ∃yRyy. This is
because R could in fact represent the relation y 6= x.

6 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Q&A
Lecture 8 (λ-calculus)

I You said in the lecture that the order of application for two-place
predicates is such that we first combine the object of a transitive
clause with the verb and then the subject, e.g. (L(m))(j) for “John
loves Mary”. Is this just a convention or is there psycholinguistic
evidence for this? – This is a syntactic convention. In some
syntactic frameworks, binarization of tree structures is assumed. If
we have binarized trees, then we have to decide which element
combines first with the verb. The object is then mostly chosen
because its case is directly determined by the verb. However, there
is (as far as I know) no straightforward psycholinguistic (or other)
evidence for these choices. For a discussion of the controversy
about binarization see also Müller (2019), Grammatical theory,
Chapter 18.

7 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Q&A
Tutorial Week 3 Exercises

I The usage of the term “nephews” in “Charles and John are
brothers or nephews” is misleading, since this suggests that
Charles is a nephew of John and John is a nephew of Charles (just
like for the relation of brothers). I replaced this with “Charles and
John are brothers or cousins”. Note that then we also have to use
exclusive or (XOR), since they cannot be both brothers and
cousins. The translation is then Bcj XOR Ccj. There is an
alternative (though rather unlikely) reading in which “brother” and
“nephew” might be seen as one-place predicates (or two-place
predicates where only one argument is specified and the other
takes a variable), i.e. that Charles and John have the property of
being brother or nephew (of some other persons, not of one
another), in this case we could have: (Bc ∧ Bj)∨(Cc ∧ Cj).

8 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Q&A
Tutorial Week 3 Exercises

I “All professional football players are ambitious” is now translated
as: ∀x((Px ∧ Fx)→ Ax). Note that translating “professional football
player” as Px ∧ Fx is somewhat problematic, since “x is
professional” and “x is a football player” could also mean that x is
professional in some other regard, not necessarily regarding being
a football player. In fact, this is one of the reasons why we might
want to go beyond predicate logic towards type theory. However, if
we want to stick to predicate logic, and translate the adjective here
separately, then this is the only way we can do it. An alternative is
to just consider “professional football player” as one predicate, e.g.
Fx.

9 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Q&A
Tutorial Week 3 Exercises

I To translate a sentence with everybody/everyone into predicate
logic, e.g. “Everybody loves Mary”, wouldn’t we need to also define
everybody/everyone as a person, i.e. ∀x(Px→ Lxm)? – It is
possible to do this to disambiguate between everything and
everybody in the domain of discourse. However, Gamut (1991), for
instance, do not require such disambiguation.

10 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Overview
Section 1: Propositional Logic

The Vocabulary
The Syntax: Recursive Definition

Section 2: Predicate Logic
The Vocabulary
The Syntax: Recursive Definition
Valuation

Section 3: Second-Order Logic
The Syntax: Recursive Definition

Section 4: Type Theory
The Syntax: Recursive Definition

Section 5: λ-calculus
λ-abstraction
λ-conversion

Summary
References

11 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 1: Propositional Logic



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Formal Definition: Proposition

“The proposition expressed by a sentence is the set of
possible cases [situations] of which that sentence is true.”
Zimmermann & Sternefeld (2013), p. 141.

Coin-flip example:
situation flip1 flip2
1 heads heads
2 tails tails
3 heads tails
4 tails heads

Sentence Proposition
S1: only one flip landed heads up JS1K = {3,4}
S2: all flips landed heads up JS2K = {1}
S3: flips landed at least once tails up JS3K = {2,3,4}
etc. etc.

13 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Propositional Formulas

“The propositional letters and the composite expressions
which are formed from them by means of connectives are
grouped together as sentences or formulas. We designate
these by means of the letters φ and ψ, etc. For these
metavariables, unlike the variables p, q, and r, there is no
convention that different letters must designate different
formulas.”
Gamut, L.T.F (1991). Volume 1, p. 29.

Examples:
φ ≡ p,q, r, etc.
φ ≡ ¬p,¬q,¬r, etc.
φ ≡ p ∧ q,p ∨ q, etc.
φ ≡ ¬(¬p1 ∨ q5)→ q, etc.

14 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

The Vocabulary

We can now define a language L for propositional logic.
The “vocabulary” A of L consits of the propositional letters
(e.g. p, q, r, etc.), the operators (e.g. ¬, ∧, ∨,→, etc.), as
well as the round brackets ‘(’ and ‘)’. The latter are important
to group certain letters and operators together. We thus
have:

A = {p,q, r , ...,¬,∧,∨,→, ..., (, )} (1)

15 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

The Syntax: Recursive Definition
Reminiscent of formal grammars of natural languages (see last years
lecture on Phrase Structure Grammar), we now also need to define
syntactic rules which allow for the symbols of the vocabulary to be
combined yielding well-formed expressions. These rules are:

(i) Propositional letters in the vocabulary of L are formulas in L.

(ii) If φ is a formula in L, then ¬φ is too.

(iii) If φ and ψ are formulas in L, then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and
(φ↔ ψ) are too.1

(iv) Only that which can be generated by the clauses (i)-(iii) in a finite
number of steps is a formula in L.

Gamut, L.T.F (1991). Volume 1, p. 35.

1We could also add the exclusive or here as a connective.

16 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Examples of Valid and Invalid Formulas

Formula
p X
¬¬¬q X
((¬p ∧ q) ∨ r ) X
((¬(p ∨ q)→ ¬¬¬q)↔ r ) X

pq x
¬(¬¬p) x
∧p¬q x
¬((p ∧ q → r )) x

Rule Applied
(i)
(i) and (ii)
(i), (ii), and (iii)
(i), (ii), and (iii)

–
–
–
–

17 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

The Semantics of Propositional Logic

“The valuations we have spoken of [i.e. truth valuations of
formulas] can now, in the terms just introduced [i.e.
functions], be described as (unary)2 functions mapping
formulas onto truth values. But not every function with
formulas as its domain and truth values as its range will do.
A valuation must agree with the interpretations of the
connectives which are given in their truth tables.”
Gamut, L.T.F (1991). Volume 1, p. 35.

2An unary function is a function with a single argument, e.g. f(x). A binary function
could be f(x,y), a ternary function f(x,y,z), etc.

18 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Valuation Function
The valuation function V for each logical operator and
logical formulas φ and ψ are then given as:

(i) Negation: V (¬φ) = 1 iff V (φ) = 0,

(ii) Logical “and”: V (φ ∧ ψ) = 1 iff V (φ) = 1 and V (ψ) = 1,

(iii) Inclusive “or”: V (φ ∨ ψ) = 1 iff V (φ) = 1 or V (ψ) = 1,

(iv) Material implication: V (φ→ ψ) = 0 iff V (φ) = 1 and V (ψ) = 0,

(v) Material equivalence: V (φ↔ ψ) = 1 iff V (φ) = V (ψ).

Gamut (1991). Volume I, p. 44.

19 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 2: Predicate Logic



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Propositional Logic vs. Predicate Logic

Commonalities:

I Usage of the same connectives and negation.

Differences:

I The introduction of constants and variables
representing individuals and predicates to capture the
main structural building blocks of sentences.

I The introduction of quantifiers to allow for quantified
statements.

21 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

The Vocabulary

Similar as for propositional logic, we can define a language
L for predicate logic. In this case, the “vocabulary” of L
consits of

I a (potentially infinite) supply of constant symbols (e.g.
a, b, c, etc.),

I a (potentially infinite) supply of variable symbols
representing the constants (e.g. x, y, z, etc.),

I a (potentially infinite) supply of predicate symbols (e.g.
A, B, C, etc.),

I the connectives (e.g. ¬, ∧, ∨,→, etc.),
I the quantifiers ∀ and ∃,
I as well as the round brackets ‘(’ and ‘)’.
I (The equal sign ‘=’.)

22 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Translation Key
In order to translate a set of natural language sentences into predicate
logic expressions unambiguously, we need a translation key listing the
predicates and constant symbols.
Gamut, L.T.F (1991). Volume 1, p. 68.

English sentences:

(1) John is bigger than Peter or Peter is bigger
than John.

(2) Alkibiades does not admire himself.

(3) If Socrates is a man, then he is mortal.

(4) Ammerbuch lies between Tübingen and
Herrenberg.

(5) Socrates is a mortal man.

Translation key:

a1: Alcibiades
a2: Ammerbuch
j: John
p: Peter
s: Socrates
t: Tübingen
h: Herrenberg

Axy: x admires y
B1xy: x is bigger than y
B2xyz: x lies between y and z
M1x: x is a man
M2x: x is mortal

23 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Translation Examples
We can then translate the natural language sentences into predicate
logic by further identifying the logical operators, i.e. connectives and
negation.
Gamut, L.T.F (1991). Volume 1, p. 68.

English sentences:

(1) John is bigger than Peter or John is bigger than
Socrates.

(2) Alcibiades does not admire himself.

(3) If Socrates is a man, then he is mortal.

(4) Ammerbuch lies between Tübingen and Herrenberg.

(5) Socrates is a mortal man.

Translations:

(1) B1jp ∨ B1js

(2) ¬Aa1a1

(3) M1s→ M2s

(4) B2a2th

(5) M1s ∧ M2s

24 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

The Syntax: Recursive Definition
Given the vocabulary of L we define the following clauses to create
formulas of L.

(i) If A is an n-ary predicate letter in the vocabulary of L, and each of
t1, . . . , tn is a constant or a variable in the vocabulary of L, then
At1, . . . , tn is a formula in L.

(ii) If φ is a formula in L, then ¬φ is too.

(iii) If φ and ψ are formulas in L, then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and
(φ↔ ψ) are too.

(iv) If φ is a formula in L and x is a variable, then ∀xφ and ∃xφ are
formulas in L.

(v) Only that which can be generated by the clauses (i)-(iv) in a finite
number of steps is a formula in L.

Gamut, L.T.F (1991). Volume 1, p. 75.

25 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Examples of Valid and Invalid Formulas

Formula
Aa X
Ax X
Aab X
Axy X
¬Axy X
Aa→Axy X
∀x(Aa→Axy) X
∀xAa→Axy X

a x
A x
∀ x
∀(Axy) x

Rule Applied
(i)
(i)
(i)
(i)
(i) and (ii)
(i) and (iii)
(i),(iii), and (iv)
(i),(iii), and (iv)

–
–
–
–

26 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Definition: The valuation function VM
“If M is a model for L whose interpretation function I is a function of the
constants in L onto the domain D, then VM , the valuation V based on M,
is defined as follows:”

(i) If Aa1, . . . ,an is an atomic sentence in L, then VM(Aa1, . . . ,an) = 1 if
and only if 〈I(a1), . . . , I(an)〉 ∈ I(A).

(ii) VM(¬φ) = 1 iff VM(φ) = 0.

(iii) VM(φ ∧ ψ) = 1 iff VM(φ) = 1 and VM(ψ) = 1.

(iv) VM(φ ∨ ψ) = 1 iff VM(φ) = 1 or VM(ψ) = 1.

(v) VM(φ→ ψ) = 0 iff VM(φ) = 1 and VM(ψ) = 0.

(vi) VM(φ↔ ψ) = 1 iff VM(φ) = VM(ψ).

Gamut, L.T.F (1991). Volume 1, p. 91.

27 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Definition: The valuation function VM

(vii) VM(∀xφ) = 1 iff VM([c/x ]φ) = 1 for all constants c in L.

(viiii) VM(∃xφ) = 1 iff VM([c/x ]φ) = 1 for at least one constant c in L.

If VM(φ) = 1, then φ is said to be true in model M.
Gamut, L.T.F (1991). Volume 1, p. 91.

Note: The notation [c/x] means “replacing x by c”. Note that this
valuation works only for sentences of predicate logic as defined above.
That is, it works for formulas that consist of atomic sentences and/or
formulas with variables that are bound. For formulas with free variables,
it does not work.

28 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Valuation Example
Given a Model of the world M, consisting of D and I, and some formula φ
which adheres to predicate logic syntax (and which consists of atomic
sentences and or quantifications with bound variables), we can then
evaluate the truth of φ as follows.

Model M

D = {e1,e2,e3}
I = {〈j ,e1〉, 〈p,e2〉, 〈m,e3〉, 〈S, {〈I(j), I(m)〉, 〈I(p), I(m)〉}〉}
I(S) = {〈I(j), I(m)〉, 〈I(p), I(m)〉}
Translation key: j: John; p: Peter; m: morning star; Sxy: x sees y.

Valuation

“John sees the morning star”: VM(Sjm) = 1 (according to (i))
“Everybody sees the morning star”: VM(∀xSxm) = 0 (according to (vii))3

3This valuation gives 0 since the morning star (m) is a constant c in L, but it does
not see itself, i.e. 〈I(m), I(m)〉 /∈ S.

29 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 3: Second-Order Logic



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

First-Order Logic vs. Second-Order Logic

Commonalities:

I Usage of the same logical operators (connectives,
negation, quantifiers).

I Generally similar syntax and valuation of expressions.

Differences:

I Introducing first-order predicate variables, and
second-order predicates.

31 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Beyond Predicate Logic

We have seen that predicate logic is an extension of
propositional logic, by introducing predicates and
quantifiers. Predicate logic might itself be superseded by
another logical system, called second-order logic.
Gamut, L.T.F (1991). Volume 1, p. 168.

Take the following English sentences:

(1) Mars is red.
(2) Red is a color.
(3) Mars has a color.
(4) John has at least one thing in common with Peter.

How can we translate these into logical expressions?

32 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

First-Order and Second-Order Logic

A second-order logic language L′ is then an extension to a
standard predicate logic language L by adding second-order
predicates to L. The original language L is then sometimes
referred to as first-order logic language.

Further Examples:

(5) ∃X(CX ∧ Xm) (English sentence: “Mars has a color.”)
(6) ∃X(Xj ∧ Xp) (English sentence: “John has at least

one thing in common with Peter.”)
(7) ∃X (XR ∧ XG) (English sentence: “Red has

something (a property) in common with green.”)

33 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Vocabulary (special to Second-Order Logic)
The vocabulary extensions to fit second-order logic requirements are:

I A (potentially infinite) supply of first-order predicate variables
(e.g. X, Y, Z, etc.), which are necessary to quantify over first-order
predicates,

I a (potentially infinite) supply of second-order predicate
constants (e.g. A, B, C, etc.).

If we wanted to take it even at a higher-order level we could also have:

I a (potentially infinite) supply of second-order predicate variables
(e.g. X , Y, Z, etc.) to stand in for second-order predicates.

34 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

The Syntax: Recursive Definition
Given the vocabulary of L we then define the following clauses to create
formulas of L:

(i) If A is an n-ary first-order predicate letter/constant in L, and
t1, . . . , tn are individual terms in L, then At1, . . . , tn is an (atomic)
formula in L;

(ii) If X is a [first-order] predicate variable and t is an individual term in
L, then Xt is an atomic formula in L;

(iii) If A is an n-ary second-order predicate letter/constant in L, and
T1, . . . ,Tn are first-order unary predicate constants, or predicate
variables, in L, then AT1, . . . ,Tn is an (atomic) formula in L;

(iv) If φ is a formula in L, then ¬φ is too;

(v) If φ and ψ are formulas in L, then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and
(φ↔ ψ) are too.

35 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

The Syntax: Recursive Definition
Given the vocabulary of L we then define the following clauses to create
formulas of L:

(vi) If x is an individual variable φ is a formula in L, then ∀xφ and ∃xφ
are also formulas in L;

(vii) If X is a [first-order] predicate variable, and φ is a formula in L,
then ∀Xφ and ∃Xφ are also formulas in L;

(viii) Only that which can be generated by the clauses (i)-(vii) in a finite
number of steps is a formula in L.

Gamut, L.T.F (1991). Volume 1, p. 170.

Note: In the above clauses (i) and (ii), the word “term” is used, which
has not been defined by us before. In the context here, suffices to say
that it includes both constants and variables (of constants), i.e. a, b, c,
etc. and x, y, z, etc.

36 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Examples of Valid and Invalid Formulas

Formula
Aa X
Ax X
Axy X
Xa X
Xx X
AA X
Xa→ ¬Xb X
∀X∀x(Xa→Axy) X

x x
X x
Xab x
∀(Xa) x

Rule Applied
(i)
(i)
(i)
(ii)
(ii)
(iii)
(ii), (iv) and (v)
(i),(ii), (v), (vi), and (vii)

–
–
–
–

37 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 4: Type Theory



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Standard (First-Order) Logic vs. Typed Logic

Commonalities:

I Usage of the same logical operators (connectives,
negation, quantifiers).

Differences:

I Introduction of a potentially infinite number of types
defined for logical constants and variables which we can
quantify over. Note that this makes typed logic a
higher-order logic.

39 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Application to Natural Language

We can apply the theory of types to a logical language L by
first defining the two most basic types, of which all other
types are composed. These are the type e for entities, i.e.
individual constants (e.g. John, Jumbo), and the type t for
sentences, where t stands for truth, since truth values can
only be assigned to sentences.

In the following we will expose how the syntax of a
type-theoretic logical language L is defined.

40 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Definition: The Syntax of Types

For the set of types T we define that:
(i) e, t ∈ T,
(ii) if a,b ∈ T, then 〈a,b〉 ∈ T,
(iii) nothing is an element of T except on the basis of

clauses (i) and (ii).
Gamut (1991), Volume 2, p. 79.

Note: a and b above are variables which stand in for all kinds of types.
This means we can create an infinite number of types by recursively
applying clause (ii). For example:

Applying (ii) to a = e and b = t yields 〈e, t〉
Applying (ii) to a = 〈e, t〉 and b = t yields 〈〈e, t〉, t〉
Applying (ii) to a = e and b = 〈〈e, t〉, t〉 yields 〈e, 〈〈e, t〉, t〉〉
etc.

41 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Examples of Valid and Invalid Types

e X
t X
〈e, t〉 X
〈t ,e〉 X
〈t , 〈t ,e〉〉 X
〈〈t , 〈t ,e〉〉, t〉 X

et x
e, t x
〈e,e, t〉 x
〈e, 〈e, t〉 x

Note: The usage of left and right ankled brackets as defined by clause
(ii) results in a strict binarization of the internal structure of types, i.e.
at each level of embedding we always have an ordered pair of more
basic types.

42 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Definition: Functional Application

How do we derive one type of expression from another?
“[...] if α is an expression of type 〈a,b〉 and β is an
expression of type a, then α(β) is of type b.”
Gamut (1991), Volume 2, p. 79.

Examples
If α = 〈e, t〉 and β = e then α(β) = t .
If α = 〈〈e, t〉, 〈e, t〉〉 and β = 〈e, t〉 then α(β) = 〈e, t〉.
If α = 〈t , 〈t ,e〉〉 and β = t then α(β) = 〈t ,e〉.
However,
If α = 〈t , 〈t ,e〉〉 and β = 〈t ,e〉 then α(β) is not defined.

43 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Notation for Variables and Constants
As before, we will use the following notations to distinguish
typographically between different variables and constants at
different orders:

I Constants for entities: a, b, c, etc.
I Variables over entities: x, y, z, etc.
I First-order predicate constants: A, B, C, etc.
I Variables over first-order predicates: X, Y, Z, etc.
I Second-order predicate constants: A, B, C, etc.
I (Second-order predicate variables: X , Y, Z, etc.)4

4These are just added for completeness here. We generally don’t go into orders
higher than two in exercises and examples.

44 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

The Syntax: Recursive Definition
The clauses for the syntax of a type-theoretic language are then:

(i) If α is a variable or a constant of type a in L [i.e. va or ca], then α is an expression
of type a in L.

(ii) If α is an expression of type 〈a,b〉 in L, and β is an expression of type a in L, then
(α(β)) is an expression of type b in L.

(iii) If φ and ψ are expressions of type t in L (i.e. formulas in L), then so are ¬φ,
(φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and (φ↔ ψ).

(iv) If φ is an expression of type t in L and v is a variable (of arbitrary type a), then ∀vφ
and ∃vφ are expression of type t in L.

(v) If α and β are expressions in L which belong to the same (arbitrary) type, then
(α = β) is an expression of type t in L.

(vi) Every expression L is to be constructed by means of (i)-(v) in a finite number of
steps.

Gamut (1991), Volume 2, p. 81-82.

45 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Examples of Valid and Invalid Expressions

Definition of Types

Assume j is of type e (i.e. representing an entity), x is of type e, A is of
type 〈e, t〉 (i.e. a first order one-place predicate), B is of type 〈e, 〈e, t〉〉
(i.e. a first-order two-place predicate), and C is of type 〈〈e, t〉, t〉 (i.e. a
second-order one-place predicate).

Expressions

j X
A X
A(j) X
(B(j))(x) X alternative notation: B(j)(x)
C(B(j)) X
A(j) ∧ C(A)X
∀xA(x)X

Aj x
B(A) x
∀xC(x) x

Clause Applied

(i)
(i)
(i) and (ii)
(i) and (ii)
(i) and (ii)
(i) and (ii)
(i), (ii), and (iii)
(i), (ii), and (iv)

–
–
–

46 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 5: λ-calculus



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

The Syntax: Adding the λ-clause

We simply add another clause to the type-theoretic
language syntax:

(vii) If α is an expression of type a in L, and v is a
variable of type b, then λv(α) is an expression of
type 〈b,a〉 in L.5

Gamut (1991), Volume 2, p. 104.

5I added the brackets around α here, since at least in some cases these are
necessary to disambiguate.

48 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Examples of λ-Abstractions

Assume a, b and x, y are of type e; A is of type 〈e, t〉; B is of type
〈e, 〈e, t〉〉; and X is of type 〈e, t〉.

Expressions

x X
A(x)X
B(y)(x) X
B(a)(x) X
∀xB(x)(y)X
X(a) X
X(a) ∧ X(b)X

Types

e
t
t
t
t
t
t

λ-Abstraction

λx(x)
λx(A(x))
λx(B(y)(x)) or λy(B(y)(x))
λx(B(a)(x))
λy(∀xB(x)(y))
λX(X(a))
λX(X(a) ∧ X(b))

Types

〈e,e〉
〈e, t〉
〈e, t〉
〈e, t〉
〈e, t〉
〈〈e, t〉, t〉
〈〈e, t〉, t〉

Note: In our practical usage of the type-theoretic language, variables are
mostly defined to have type e (i.e. x, y, z, etc.). In some cases, they
might be of type 〈e, t〉, namely, if they refer to predicate variables (X, Y,
Z, etc.). Hence, λ-abstraction essentially amounts to adding an e or
〈e, t〉 as a “prefix” to the type of the expression that is abstracted over.

49 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

λ-Conversion (aka β-Reduction)

Informally speaking, λ-conversion6 is the process whereby
we reduce the λ-statement by removing the λ-operator (and
the variable directly following it) and pluging an expression
(in the simplest case a constant c, or a predicate constant
C) into every occurrence of the variable which is bound
by the λ-operator.

Typed
expression

S(x)
S(x) ∧ D(x)
X(a) ∧ X(b)

λ-Abstraction
(over x or X)

λx(S(x))
λx(S(x) ∧ D(x))
λX(X(a) ∧ X(b))

λ-Conversion
(with c or C over x or X)

λx(S(x))(c) = S(c)
λx(S(x) ∧ D(x))(c) = S(c) ∧ D(c)
λX(X(a) ∧ X(b))(C) = C(a) ∧ C(b)

6The term λ-conversion is not to be confused with α-conversion. The latter refers to
replacing one variable for another.

50 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Why is λ-calculus needed?

If our aim is to model not only full sentences and formulas
representing predicates, but also parts of sentences, and
even individual words, by using in a unified account, then
λ-abstraction and λ-conversion are possible solutions. Thus,
λ-calculus allows us to capture the compositionality of
language.

English sentence

John smokes and drinks.
John smokes
smokes
drinks
John
smokes and drinks

Typed expression

λx(S(x) ∧ D(x))(j) = S(j) ∧ D(j)
λx(S(x))(j) = S(j)
λx(S(x))
λx(D(x))
λX(X(j))
λx(S(x) ∧ D(x))

51 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Summary



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

Translation Summary

Natural Language

John smokes.
John smokes and drinks.
Jumbo likes Bambi.
Every man walks.
Red is a color.
smokes and drinks
every man
every
is

PL

p
p ∧ q
r
p1
q1
_
_
_
_

FOL

Sj
Sj ∧ Dj
Ljb
∀x(Mx→Wx)
Cr
_
_
_
_

SOL

Sj
Sj ∧ Dj
Ljb
∀x(Mx→Wx)
CR
_
_
_
_

TL

S(j)
S(j) ∧ D(j)
L(b)(j)
∀x(M(x)→W(x))
C(R)
λx(S(x) ∧ D(x))
λX(∀x(M(x)→ X(x)))
λY(λX(∀x(Y(x)→ X(x))))
λX(λx(X(x)))

PL: Propositional Logic
FOL: First-Order Predicate Logic
SOL: Second-Order Predicate Logic
TL: Typed Logic (Higher-Order) with λ-calculus

53 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

References



Section 1:
Propositional
Logic

Section 2:
Predicate Logic

Section 3:
Second-Order
Logic

Section 4: Type
Theory

Section 5:
λ-calculus

Summary

References

References
Gamut, L.T.F (1991). Logic, Language, and Meaning. Volume 1: Introduction to Logic.
Chicago: University of Chicago Press.

Gamut, L.T.F (1991). Logic, Language, and Meaning. Volume 2: Intensional Logic and
Logical Grammar. Chicago: University of Chicago Press.

55 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Thank You.
Contact:

Faculty of Philosophy
General Linguistics
Dr. Christian Bentz
SFS Wihlemstraße 19-23, Room 1.24
chris@christianbentz.de
Office hours:
During term: Wednesdays 10-11am
Out of term: arrange via e-mail

56 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen


	Section 1: Propositional Logic
	The Vocabulary
	The Syntax: Recursive Definition

	Section 2: Predicate Logic
	The Vocabulary
	The Syntax: Recursive Definition
	Valuation

	Section 3: Second-Order Logic
	The Syntax: Recursive Definition

	Section 4: Type Theory
	The Syntax: Recursive Definition

	Section 5: -calculus
	-abstraction
	-conversion

	Summary
	References

