
Faculty of Philosophy
General Linguistics

Semantics & Pragmatics SoSe 2020
Lecture 8: Formal Semantics V
(Lambda Calculus)

14/05/2020, Christian Bentz



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Q&A

I Clarification about formula, sentence, and expression:
Defining a standard predicate logic language Gamut
(1991, Volume 1, p. 77) write: “A sentence is a formula
in L which lacks free variables.” Defining a typed logic
language Gamut (1991, Volume 2, p. 81) write: “[...]
formulas are then those expressions which are of the
particular type t .”

2 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Overview

Section 1: Recap of Lecture 7

Section 2: Lambda Calculus in Logical Languages

Section 3: λ-Abstraction

Section 4: λ-Conversion

Section 5: Modelling Compositionality with λ-Calculus

Section 6: The Semantics of λ-Calculus

Summary

References

3 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 1: Recap of Lecture 7



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Example

All animals that live in the jungle have a color.

Propositional logic :
p

First-order predicate logic:
∀x((Ax ∧ Jx)→ Cx)
Translation key: Ax: x is an animal; Jx: x lives in the jungle; Cx: x has a
color.

Second-order predicate logic:
∀x(∃X((AX ∧ Jx) ∧ Xx)→ ∃Y(Yx ∧ CY))
Translation key: AX: x is a property (type of animal) which has the
property of being an animal; Jx: x lives in the jungle; CX: X is a property
(a particular color) which has the property of being a color.

5 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

The Problem of Semantic Compositionality

However, in both first- and second-order logic, there are still
no tools to get to grips with frequent compositional
structures in natural language:

I adjective-noun combinations
I adverb-verb combinations
I article-noun combinations
I prepositions-NP combinations
I etc.

6 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

The Theory of Types

How can we represent this potentially infinite number of
expressions while conserving their internal structure and
combinatorial relationships? – A logical system developed
to fit this requirement is the so-called theory of types which
was developed by Bertrand Russell as a remedy for
paradoxes encountered in set theory.
Gamut (1991), Volume 2, p. 78.

7 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Examples of Valid and Invalid Types

e X
t X
〈e, t〉 X
〈t ,e〉 X
〈t , 〈t ,e〉〉 X
〈〈t , 〈t ,e〉〉, t〉 X

et x
e, t x
〈e,e, t〉 x
〈e, 〈e, t〉 x

Note: The usage of left and right ankled brackets as defined by clause
(ii) results in a strict binarization of the internal structure of types, i.e.
at each level of embedding we always have an ordered pair of more
basic types.

8 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Definition: Functional Application

How do we derive one type of expression from another?
“[...] if α is an expression of type 〈a,b〉 and β is an
expression of type a, then α(β) is of type b.”
Gamut (1991), Volume 2, p. 79.

Examples
If α = 〈e, t〉 and β = e then α(β) = t .
If α = 〈〈e, t〉, 〈e, t〉〉 and β = 〈e, t〉 then α(β) = 〈e, t〉.
If α = 〈t , 〈t ,e〉〉 and β = t then α(β) = 〈t ,e〉.
However,
If α = 〈t , 〈t ,e〉〉 and β = 〈t ,e〉 then α(β) is not defined.

9 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Semantic Types: One-Place Predicates

An intransitive verb requires one argument to be filled in
order to form a full sentence, hence it is of the type 〈e,t〉.
Remember that the argument is on the left side of the tuple
(ordered pair), hence the component of type entity (e) is left.

S

NP

N

Midge

VP

V

grins

t

e

Midge

〈e,t〉

grins

10 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Semantic Types: Two-Place Predicates

A transitive verb requires two arguments to be filled in
order to form a full sentence, hence it is of the type 〈e,〈e,t〉〉.

S

NP

N

Midge

VP

V

likes

NP

N

Mary

t

e

Midge

〈e,t〉

〈e, 〈e,t〉〉

likes

e

Mary

11 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Summary: Types of Expressions
There is a long (potentially infinite) list of types of expressions which
we might want to represent in our logical language in order to capture
the different combinatorial possibilities we find in natural languages.

Type

e
〈e, t〉
〈e, 〈e, t〉〉
〈e, 〈e, 〈e, t〉〉〉
t
〈t , t〉
〈e,e〉
〈〈e, t〉, 〈e, t〉〉
〈〈e, t〉, t〉
〈〈e, t〉, 〈〈e, t〉, t〉〉
etc.

Kind of expression

Individual expression
One-place first-order predicate
Two-place first-order predicate
Three-place first-order predicate
Sentence
Sentential modifier
Function (entitiy to entity)
Predicate modifier
One-place second-order predicate
Two-place second-order predicate
etc.

Examples

John, Jumbo
walks, red, loves Mary
loves, sees
lies between (and)
John walks, John loves Mary
Not
The father of
Quickly, beautifully, fast
Is a color
Is a brighter color than
etc.

12 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Examples of Valid and Invalid Expressions

Definition of Types

Assume j is of type e (i.e. representing an entity), x is of type e, A is of
type 〈e, t〉 (i.e. a first order one-place predicate), B is of type 〈e, 〈e, t〉〉
(i.e. a first-order two-place predicate), and C is of type 〈〈e, t〉, t〉 (i.e. a
second-order one-place predicate).

Expressions

j X
A X
A(j) X
(B(j))(x) X alternative notation: B(j)(x)
C(B(j)) X
A(j) ∧ C(A)X
∀xA(x)X

Aj x
B(A) x
∀xC(x) x

Clause Applied

(i)
(i)
(i) and (ii)
(i) and (ii)
(i) and (ii)
(i) and (ii)
(i), (ii), and (iii)
(i), (ii), and (iv)

–
–
–

13 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Important: Expressions and Formulas

Note that in the definitions above, Gamut use the term
expression instead of formula or sentence (which were
used before in predicate logic). They further specify the
difference:
“The inductive definition of the formulas is more complicated
than in predicate logic. For what we have to give is a
general definition is a general definition of what is to be an
expression of a type a ∈ T, the formulas are then those
expressions which are of particular type t.”
Gamut (1991), Volume 2, p. 81.

14 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Truth Valuation
However, the complexity of defining interpretation functions for all kinds
of different types of expressions (see table below from Gamut) is beyond
the scope of this course.
Gamut (1991), p. 86.

Type

e
〈e, t〉
〈e, 〈e, t〉〉
〈e, 〈e, 〈e, t〉〉〉
t
〈t , t〉
〈e,e〉
〈〈e, t〉, 〈e, t〉〉
〈〈e, t〉, t〉
〈〈e, t〉, 〈〈e, t〉, t〉〉
etc.

Interpretation

Entity
Function from entities to truth values, i.e. characteristic function
Function from entities to sets of entities
Function from entities to functions from entities to sets of entities
Truth value
Function from truth values to truth values
Function from entities to entities
Function from sets of entities to sets of entities
Characteristic function of a set of sets of entities
Function from sets of entities to sets of sets of entities
etc.

15 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Summary

I The theory of types enables us to assign a type to any
kind of natural language structure.

I Functional applications of expressions of certain
types to one another than enable us to represent the
rich combinatoriality of natural language structures.

I Truth valuations are possible via particular
interpretation functions defined for different types of
expressions.

16 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 2: Lambda Calculus
in Logical Languages



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Towards a Fully Compositional Account

A logical language L built on the theory of types is extremely
powerful, since it is capable of representing a potentially
infinite number of different natural language structures.
However, we still cannot (yet) represent parts of
sentences or predicates in a fully compositional account.

Examples

John smokes.
John smokes and drinks.
Every man walks.
smokes and drinks
every man
every

Translations (Typed Language)

S(j)
S(j) ∧ D(j)
∀x(M(x)→W(x))
?
?
?

18 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Some (Possible?) Translations and Problems

Example

smokes and drinks
smokes and drinks
every man
every

Translation (?)

S ∧ D
S(x) ∧ D(x)
∀xM(x)
∀, ∀x

Problems

see (1)
see (2)
see (3)
see (4)

(1) This is not a valid expression in a type-theoretic logical language, since only
formulas of type t can be combined with connectives, while first-order
predicates lacking arguments are of type 〈e, t〉. This translation would not be
valid in standard predicate logic either, since atomic sentences are here
defined as predicates taking at least one constant or variable.

(2) While this is a valid expression, it would translate as x smokes and x drinks,
which is not exactly the same as just smokes and drinks.

(3) Given a domain of entities D, ∀xM(x) backtranslates to everybody is a man,
which is not the same as every man.

(4) Both of these are neither valid expressions in a type-theoretic language, nor
valid formulas in standard predicate logic.

19 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Historical Note
“[...] it was not until the late 1960s that logical techniques
were applied to a compositional analysis of natural
language, an achievement ascribable mostly to Richard
Montague. As it turns out, predicate logic is not well suited
for this task, one reason being that its expressive power
resides exclusively in the sentence-like category of
formulae: only formulae are recursively combinable, all
other expressions are lexical. As long as only the meanings
of full sentences are at stake, this does not matter; but when
it comes to representing their parts, the resources of
predicate logic do not suffice.”
Zimmerman & Sternefeld (2013), p. 253.

20 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Historical Note: Lambda Calculus
“Functional abstraction was already introduced by Frege
(1891), who expressed it by accented Greek letters. Its
importance for compositional semantic analysis was first
realized by Richard Montague, who used lambdas – a
notation that goes back to Alonzo Church’s (1903–1995)
work on the theory of computation [...].”
Zimmerman & Sternefeld (2013), p. 254.

21 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Disclaimer
“Now it is, of course, also possible to treat the composition
of predicates without a λ-operator [...] So why do we need
a λ-operator? The advantage of the λ-operator is that it
provides a uniform treatment not only of these examples
[combination of predicates] but also of many others too.”
Gamut (1991), Volume 2, p. 107.

22 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 3: λ-Abstraction



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

The Syntax: Recursive Definition (Last Lecture)
The clauses for the syntax of a type-theoretic language are then:

(i) If α is a variable or a constant of type a in L [i.e. va or ca], then α is an expression
of type a in L.

(ii) If α is an expression of type 〈a,b〉 in L, and β is an expression of type a in L, then
(α(β)) is an expression of type b in L.

(iii) If φ and ψ are expressions of type t in L (i.e. formulas in L), then so are ¬φ,
(φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and (φ↔ ψ).

(iv) If φ is an expression of type t in L and v is a variable (of arbitrary type a), then
∀vφ and ∃vφ are expression of type t in L.

(v) If α and β are expressions in L which belong to the same (arbitrary) type, then
(α = β) is an expression of type t in L.

(vi) Every expression L is to be constructed by means of (i)-(v) in a finite number of
steps.

Gamut (1991), Volume 2, p. 81-82.

24 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

The Syntax: Adding the λ-clause

We simply add another clause to the type-theoretic
language syntax:

(vii) If α is an expression of type a in L, and v is a variable of
type b, then λv(α) is an expression of type 〈b,a〉 in L.1

Gamut (1991), Volume 2, p. 104.

1I added the brackets around α here, since at least in some cases these are
necessary to disambiguate.

25 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

λ-Abstraction
We say that λv(α) has been formed from α by abstraction
over the formerly free variables v. Hence, the free
occurrences of v in α are now bound by the λ-operator λx.
Gamut (1991), Volume 2, p. 104.

Expression
S(x) of type t

λ-abstraction
λx(S(x)) of type 〈e, t〉

Note: The first-order predicate S of type 〈e, t〉 is applied to
variable x of type e, and yields S(x) of type t . In the case of
λ-abstraction this is simply reverted, i.e. the type of λx(S(x))
is 〈e, t〉 again.

26 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Examples of λ-Abstractions

Assume a, b and x, y are of type e; A is of type 〈e, t〉; B is of type
〈e, 〈e, t〉〉; and X is of type 〈e, t〉.

Expressions

x X
A(x)X
B(y)(x) X
B(a)(x) X
∀xB(x)(y)X
X(a) X
X(a) ∧ X(b)X

Types

e
t
t
t
t
t
t

λ-Abstraction

λx(x)
λx(A(x))
λx(B(y)(x)) or λy(B(y)(x))
λx(B(a)(x))
λy(∀xB(x)(y))
λX(X(a))
λX(X(a) ∧ X(b))

Types

〈e,e〉
〈e, t〉
〈e, t〉
〈e, t〉
〈e, t〉
〈〈e, t〉, t〉
〈〈e, t〉, t〉

Note: In our practical usage of the type-theoretic language, variables are
mostly defined to have type e (i.e. x, y, z, etc.). In some cases, they
might be of type 〈e, t〉, namely, if they refer to predicate variables (X, Y,
Z, etc.). Hence, λ-abstraction essentially amounts to adding an e or
〈e, t〉 as a “prefix” to the type of the expression that is abstracted over.

27 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

More Examples: Recursive Application

Assume that B below represents the relation of “befriend” in English.
The expression (B(y))(x) – here simplified to B(y)(x) – then represents “x
befriends y”.

Expressions

B(y)(x)
λy(B(y)(x))

Types

t
〈e, t〉

λ-Abstraction

λy(B(y)(x))
λx(λy(B(y)(x)))

Types

〈e, t〉
〈e, 〈e, t〉〉

Note: B(y)(x) is equivalent to the standard predicate logic expression Bxy. We have
already pointed out in the last lecture that for two-place predicates it is a convention in
type-theoretic languages to apply the predicate first to what would be the object of a
transtitive sentence (i.e. y here), and then secondly to what would be the subject (i.e.
x). This is also reflected in the order of application of the λ-abstraction to first y and
then x.

28 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 4: λ-Conversion



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

λ-Conversion (aka β-Reduction)

Informally speaking, λ-conversion2 is the process whereby
we reduce the λ-statement by removing the λ-operator (and
the variable directly following it) and pluging an expression
(in the simplest case a constant c, or a predicate constant
C) into every occurrence of the variable which is bound
by the λ-operator.

Typed
expression

S(x)
S(x) ∧ D(x)
X(a) ∧ X(b)

λ-Abstraction
(over x or X)

λx(S(x))
λx(S(x) ∧ D(x))
λX(X(a) ∧ X(b))

λ-Conversion
(with c or C over x or X)

λx(S(x))(c) = S(c)
λx(S(x) ∧ D(x))(c) = S(c) ∧ D(c)
λX(X(a) ∧ X(b))(C) = C(a) ∧ C(b)

2The term λ-conversion is not to be confused with α-conversion. The latter refers to
replacing one variable for another.

30 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

λ-Conversion (Formal Definition)
In general, λ-conversion is defined as the process whereby an
expression of the form λv(β)(γ) is reduced to [γ/v]β.

I β is a typed expression (e.g. S(x) or S(x) ∧ D(x) above).

I v is a variable (e.g. x, y, z, X, Y, Z).

I γ is another expression which the λ-expression is applied to (i.e.
functional application). In the simple case, this is a constant c or C
as above.

I [γ/v]β means all occurrences of v in β are replaced by γ.

Important caveat: This definition holds only if “all variables which occur
as free variables in γ are free for v in β”, i.e. if no occurrence of v in β is
bound by a quantifier or another λ-operator.

Gamut (1991), Volume 2, p. 109-110.

31 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Valid and Invalid λ-Conversions

λ-Abstraction

λx(S(x) ∧ D(x))
λy(λx(S(x) ∧ D(y)))

λx(λy(A(y)(x)))

λx(∀xF(x))
λx(∃xF(x)→ S(x))
λX(∀X(X(a) ∧ X(b)))

λ-Conversion

λx(S(x) ∧ D(x))(c) = S(c) ∧ D(c) X
λy(λx(S(x) ∧ D(y)))(c)(d) =
λx(S(x) ∧ D(c))(d) =
S(d) ∧ D(c) X
λx(λy(A(y)(x)))(c)(d) =
λy(A(y)(c))(d) =
A(d)(c) X

λx(∀xF(x))(c) x
λx(∃xF(x)→ S(x))(c) x
λX(∀X(X(a) ∧ X(b)))(C) x

Note: While the rule for λ-abstraction given above in clause (vii) licenses all the
abstractions in the left side, λ-conversion is only valid for a subset of these, namely the
ones where the variable v is not bound by a quantifier. In practice, this means we
generally avoid λ-abstractions of variables which are already bound.

32 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 5: Modelling Compositionality
with λ-Calculus



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Why is λ-calculus needed?

If our aim is to model not only full sentences and formulas
representing predicates, but also parts of sentences, and
even individual words, by using in a unified account, then
λ-abstraction and λ-conversion are possible solutions. Thus,
λ-calculus allows us to capture the compositionality of
language.

English sentence

John smokes and drinks.
John smokes
smokes
drinks
John
smokes and drinks

Typed expression

λx(S(x) ∧ D(x))(j) = S(j) ∧ D(j)
λx(S(x))(j) = S(j)
λx(S(x))
λx(D(x))
λX(X(j))
λx(S(x) ∧ D(x))

34 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Further Examples: Two-Place Predicates

English sentence

Jumbo likes Bambi.
Jumbo likes
likes Bambi
likes

Typed expression

λx(λy(L(y)(x)))(j)(b) = L(b)(j)
λy(L(y)(j))
λx(L(b)(x))
λy(λx(L(y)(x)))

Note: Gamut (1991), Volume 2, p. 107-108, discuss how the active relation “likes”
might be represented differently from the passive relation “is liked by”. Namely, assume
we have L(y)(x) representing “x likes y”. If we first abstract over x we get λx(L(y)(x))
which represents “likes y” (since x is now bound by the λ-operator). If we then abstract
over y we get λy(λx(L(y)(x))), which represents “likes”. If we do it the other way around,
however, we first get λy(L(y)(x)) which represents “is liked by x”, and in the second step
we get λx(λy(L(y)(x))) “is liked by”. However, we will here assume that active and
passive sentences are equivalent in terms of their λ-representations, otherwise we
couldn’t represent a structure like “Jumbo likes”, since λy(L(y)(j)) would strictly
translate as “is liked by Jumbo”.

35 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Further Examples: The Copular “Be”

English sentence

Jumbo is grey.
is grey
Jumbo is
is

Typed expression

λx(G(x))(j) = G(j)
λx(G(x))
λX(X(j))
λX(λx(X(x)))

Note: In order to just represent be/is here, we have to use a predicate
variable X to represent all possible one-place predicates. Since in the
last step we abstract both over the variable standing in for the individual
(x), and the variable standing in for a predicate applied to the individual
(X), all that remains is the copular. Of course, this means that the whole
sentence Jumbo is grey could also be represented as a λ-expression,
i.e. λX(λx(X(x)))(G)(j) which is equivalent to G(j) after λ-conversion. This
representation of the copular in a λ expression is found in Kearns
(2011), p. 78.

36 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Further Examples: Quantified Expressions

English sentence

Every man walks.
every man
every
Some man walks.
some man
some
No man walks.
no man
no

Typed expression

∀x(M(x)→W(x))
λX(∀x(M(x)→ X(x)))
λY(λX(∀x(Y(x)→ X(x))))
∃x(M(x) ∧W(x))
λX(∃x(M(x) ∧ X(x)))
λY(λX(∃x(Y(x) ∧ X(x))))
¬∃x(M(x) ∧W(x))
λX(¬∃x(M(x) ∧ X(x)))
λY(λX(¬∃x(Y(x) ∧ X(x))))

Note: In order to represent just the quantifiers every, some, and no we
need two predicate variables here (X and Y). Same as before, whole
sentences can also be represented by λ-expressions, e.g. every man
walks is λY(λX(∀x(Y(x)→ X(x))))(M)(W) before λ-conversion, which
becomes (and is hence equivalent to) ∀x(M(x)→W(x)) after
λ-conversion.
37 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Section 6: The Semantics of λ-Calculus



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Truth Valuation
It is important to realize that λ-calculus is not just a
syntactic extension to type-theoretic languages, i.e.
some descriptive convention of how to encode certain parts
of natural language sentences, but it is also fully compatible
with the semantic side of truth valuation.

Example
Remember from last lecture that in a type-theoretic language we might
represent a verb like walks by W of type 〈e, t〉. In order to valuate the
truth of a particular formula (e.g. W(j)) we define the set of all relevant
entities D (the domain) with members d, and a subset W ⊆ D whose
members can be said to walk. We then define an interpretation function
I for which it holds that:

I(W )(d) = 1 iff d ∈W ; and I(W )(d) = 0 iff d /∈W . (1)

I(W) is a so-called characteristic function of W (over D).

39 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Truth Valuation
It is important to realize that λ-calculus is not just a
syntactic extension to type-theoretic languages, i.e.
some descriptive convention of how to encode certain parts
of natural language sentences, but it is also fully compatible
with the semantic side of truth valuation.

Example
Now, for an expression W(x) we have the problem that while it is of type
t we cannot actually assign a truth value {0,1} to it. It can be shown,
however, that λx(W(x)) is a function h such that

h = I(W ). (2)

In other words, for all entities d in the domain D it holds that h(d)=1 iff
I(W)(d)=1. This illustrates that the denotation of λx(W(x)) is indeed the
same as one would expect for just the word walks represented by W.
Gamut (1991), Volume 2, p. 105.

40 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

Summary



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

Summary

I λ-calculus enables us to represented the semantic
compositionality of natural language sentences even
below the level of predicates and formulas.

I There are two main processes of λ-calculus, namely,
λ-abstraction and λ-conversion. The former leads to the
binding of formerly unbound variables, the latter can be
used to reduce complex λ expressions to simpler ones
by pluging in the constants.

I The semantic interpretation of λ expressions is fully
compatible with truth valuation as defined for logical
languages more generally.

42 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Faculty of Philosophy
General Linguistics

References



Section 1: Recap
of Lecture 7

Section 2:
Lambda Calculus
in Logical
Languages

Section 3:
λ-Abstraction

Section 4:
λ-Conversion

Section 5:
Modelling
Compositionality
with λ-Calculus

Section 6: The
Semantics of
λ-Calculus

Summary

References

References
Gamut, L.T.F (1991). Logic, Language, and Meaning. Volume 1: Introduction to Logic.
Chicago: University of Chicago Press.

Gamut, L.T.F (1991). Logic, Language, and Meaning. Volume 2: Intensional Logic and
Logical Grammar. Chicago: University of Chicago Press.

Kroeger, Paul R. (2019). Analyzing meaning. An introduction to semantics and
pragmatics. Second corrected and slightly revised version. Berlin: Language Science
Press.

Zimmermann, Thomas E. & Sternefeld, Wolfgang (2013). Introduction to semantics.
An essential guide to the composition of meaning. Mouton de Gruyter.

44 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen



Thank You.
Contact:

Faculty of Philosophy
General Linguistics
Dr. Christian Bentz
SFS Wihlemstraße 19-23, Room 1.24
chris@christianbentz.de
Office hours:
During term: Wednesdays 10-11am
Out of term: arrange via e-mail

45 | Semantics & Pragmatics, SoSe 2020, Bentz c© 2012 Universität Tübingen


	Section 1: Recap of Lecture 7
	Section 2: Lambda Calculus in Logical Languages
	Section 3: -Abstraction
	Section 4: -Conversion
	Section 5: Modelling Compositionality with -Calculus
	Section 6: The Semantics of -Calculus
	Summary
	References

