

Faculty of Philosophy General Linguistics

Semantics & Pragmatics SoSe 2020 Lecture 19: Summary Pragmatics

07/07/2020, Christian Bentz

Overview

- Q&As About ALMA and Exam
- Lecture 14: Discourse Representation Theory I
- Lecture 15: Discourse Representation Theory II
- Lecture 16: Implicature
- Lecture 17: Presupposition
- Lecture 18: Speech Acts

Questions about Exam and ALMA

Why is it not possible to register for the courses of this term (SoSe 2020)? Isn't this a requirement for then registering for the exam?

In this particular case, post-hoc registration for courses (SoSe 2020) is not possible. However, you will still be able to register for the exams.

- What happens if you register for an exam, but you don't show up?
 You fail.
- When is the deadline for stepping back from an exam once you have registered?

- For Semantics & Pragmatics it will be **before** the actual exam on 23/07/2020. The exact deadline will be given when you register for the exam.

Q&As About ALMA and Exam

- Lecture 14: Discourse Representation Theory I
- Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Questions about Exam and ALMA

What happens in case of absence due to illness?

- You will have to provide an official attestation by a doctor to the lecturer of the course (as before).

What if the internet connection is interrupted while I do the exam? Should I use a university internal computer (i.e. in the library)?

– No, it is not an official requirement at the moment to use a university internal computer. You will generally receive somewhat more time to work on the exam (2 hours instead of 90 mins), so that you have a buffer in case the internet connection is lost for some time. If you have severe internet connection problems during the exam, please contact me afterwards, and we might be able to find a solution.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Questions about Exam and ALMA

What if I need a transcript for an application?

– You will be able to print transcripts yourself on ALMA. However, if it needs to be stamped and signed, then you will need to contact the "Prüfungsamt".

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Test Exam

Is the test exam "live", or can we do it whenever we want?
 It is going to be "live", i.e. it will be possible to work on it between 10-12am this Thursday (9th July).

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Important Dates

Begin of Registration Period: **7th July 2020** End of Registration Period: **20th July 2020** Exam Semantics & Pragmatics: **23rd July 2020**

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Tutorial 9: Discourse Representation Theory

Would we use the merge operator as well for constructions like "Jumbo is big and fast"?

– Yes. The most straightforward translation into DRSs, in parallel to standard predicate logic, is to use two separate existential statements, which are then merged.

Standard Predicate Logic: $Bj \land Fj$ DRT: [x: Jumbo(x), big(x)] \oplus [x: Jumbo(x), fast(x)] = [x: Jumbo(x), big(x), fast(x)]

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Tutorial 9: Discourse Representation Theory

The expression 'x is accessible to y' is very confusing. It both means that x can take the value of y, and that y can take the value of x. I think that the former reading is a positive phrase that x can access y, and the latter is a passive reading that x can be accessed by y.

I think only the reading "y can take the value of x" is allowed here.
 "x is accessible to y" is equivalent to "y has access to x", but not the other way around.

Q&As About ALMA and Exam

- Lecture 14: Discourse Representation Theory I
- Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Tutorial 9: Discourse Representation Theory

Would the conjunction "but" also be translated with the merge operator, just like "and".

– Yes, in parallel to standard predicate logic, this is what we would do here. As far as I know, there is no special mechanism in DRT which would deal with conventional implicatures like the contrast encoded by "but".

Q&As About ALMA and Exam

- Lecture 14: Discourse Representation Theory I
- Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Tutorial 9: Discourse Representation Theory

In the solution for Exercise 1b) "Every elephant likes a deer" the quantifier is put in between the two DRSs [2 ...] and [3 ...]. Is this position fixed or could the quantifier also be put before [2...]?

– This position is fixed, at least according to the formal definition given by Geurts and Beaver (2007): we have $K(\forall x)K'$ rather than $(\forall x)KK'$ (with K and K' being DRSs).

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Theory I

Faculty of Philosophy General Linguistics

Lecture 14: Discourse Representation

Historical Background

"In the early 1980s, **Discourse Representation Theory** (**DRT**) was introduced by Hans Kamp as a theoretical framework for dealing with issues in the semantics and pragmatics of anaphora and tense (Kamp 1981); a very similar theory was developed independently by Irene Heim (1982)."

1970

Nontagovian

1980

Geurts & Beaver (2007), p. 1.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Lecture 18: Speech Acts

13 | Semantics & Pragmatics, SoSe 2020, Bentz

1960

1990

Differences to Classical Formal Semantics

Some **differences** to classical formal semantic frameworks, e.g. standard predicate logic and type-theoretic logic, include:

DRT deals with interpretations not only of individual sentences, but of discourse structures.

 \rightarrow **Discourse** Representation Theory

It is a mentalist and representationalist theory of interpretation of natural language structures, i.e. it aims to explicitly represent in its formulations what is represented in the human mind when interpreting natural language.

 \rightarrow Discourse **Representation** Theory

Geurts & Beaver (2007), p. 1.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Anaphora Resolution

The problem of how hearers are able to "**resolve**" anaphora, e.g. to know which referent (antecedent) of the discourse a **pronoun (consequent)** is referring back to, has received attention from both syntacticians and semanticists over the course of centuries. It has resisted straightforward explanations.

If Bambi_i gives Maya_i flowers_k she_i will like them_k.

Note: While anaphora resolution across sentences might be considered outside the scope of classical syntax and semantics – as these theories mostly deal with single sentences – the same problems also occur within sentences.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Discourse Representation Structures

A DRS consists of two major parts:

- 1. a set of discourse referents,
- 2. a set of so-called **DRS-conditions** which capture the information about referents that has accummulated over the discourse.
 - (1) John chased Jumbo.[x, y: John(x), Jumbo(y), chased(x,y)]
 - (2) John chased a donkey.[x, y: John(x), donkey(y), chased(x,y)]
 - (3) A farmer chased a donkey.[x, y: farmer(x), donkey(y), chased(x,y)]

Note: The colon ':' delimits the set of discourse referents from the set of discourse conditions.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Merging Operation

Beyond single sentences (or parts of sentences) discourse structures can be built also for consecutive sentences by **merging** their DRSs using the \oplus -operator, which is defined as their pointwise union from a set-theoretic perspective.

- (4) A farmer chased a donkey.[x, y: farmer(x), donkey(y), chased(x,y)]
- (5) He caught it.
 [v, w: caught(v, w)]
 Geurts & Beaver (2007), p. 7.

Note: The discourse referents of the second sentence are here underlined to indicate that they are in need of antecedents. Geurts & Beaver (2007) do not further explain according to which rules exactly the underlined discourse referents (v, w) are matched with the discourse referents in the former DRS (x, y). In English, this could be done, for instance, via grammatical gender and/or word order.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Example

[x, y: farmer(x), donkey(y), chased(x,y)] \oplus [v, w: caught(v, w)] = [x, y, v, w: farmer(x), donkey(y), chased(x,y), caught(v, w)] = [x, y, v, w: v=x, w=y, farmer(x), donkey(y), chased(x,y), caught(v,w)] = [x, y: farmer(x), donkey(y), chased(x,y), caught(x,y)]

- The first line is just the original DRSs connected with the ⊕-operator.
- In the the second line, all discourse referents which are not already represented in the former DRS are added to the set of discourse referents, and likewise for the discourse conditions (pointwise union).
- In the third line, discourse conditions are added (equations) to model the mapping of antecedents to consequents.
- In the last line, these are then "resolved", i.e. replaced by the original discourse referents x and y.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Complex DRS Conditions: Negation

The above example deals with **simple, i.e. non-embedded DRS conditions**. However, there are various natural language scenarios that require more **complex DRS conditions**, i.e. **embedded** DRS conditions. One such example is **negation**.

- (6) John doesn't have a donkey.
 [1 x: John(x), ¬[₂ y: donkey(y), owns(x,y)]]
- (7) It is grey.
 [<u>z</u>: grey(z)]
 Geurts & Beaver (2007), p. 7-8.

Note: The negation here scopes over *owns a donkey*, not over *John*. This scope is reflected in the embedded DRS.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Complex DRS Conditions: Conditionals

Similar to negation, **conditionals (material implication)** also gives rise to complex, i.e. embedded DRS structures.

(8) If John owns a donkey, he likes it. $[_1: [_2 x, y: John(x), donkey(y), owns(x,y)] \rightarrow [_3 v, w: likes(v,w)]]$

Note: Geurts & Beaver (2007), p. 8 put John(x) outside of [2...]. However, it is unclear why John(x) would not belong to the antecedent of the conditional. In fact, Kamp (2016), p. 13 puts it inside [2...]. We follow Kamp (2016) here. As to accessibility: The discourse referents x and y are accessible to v and w as before in the case of the conditional.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Faculty of Philosophy General Linguistics

Lecture 15: Discourse Representation Theory II

Formal Definition

"DRSs are **set-theoretic objects** built from **discourse referents** [the set *U*] and **DRS-conditions** [the set *Con*]."

- (i) A DRS *K* is a pair $\langle U_K, Con_K \rangle$, where U_K is a set of discourse referents, and Con_K is a set of DRS-conditions.
- (ii) If *P* is an n-place predicate, and x_1, \ldots, x_n are discourse referents,¹ then $P(x_1, \ldots, x_n)$ is a DRS condition.
- (iii) If x and y are discourse referents, then x=y is a DRS-condition.
- (iv) If *K* and *K'* are DRSs, then $\neg K$, $K \rightarrow K'$, and $K \lor K'$ are DRS-conditions.
- (v) If K and K' are DRSs and x is a discourse referent, then $K(\forall x)K'$ is a DRS-condition.

Geurts & Beaver (2007), p. 12.

¹In the actual examples, Geurts & Beaver (2007) do not use variable *x* with indeces but rather *x*, *y*, *z*, etc.

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Clause (i): DRS Basic Structure

- (i) A DRS K is a pair (U_K, Con_K), where U_K is a set of discourse referents, and Con_K is a set of DRS-conditions.
- (9) John chased Jumbo.[x, y: John(x), Jumbo(y), chased(x,y)]
- (10) John chased a donkey.[x, y: John(x), donkey(y), chased(x,y)]
- (11) A farmer chased a donkey.[x, y: farmer(x), donkey(y), chased(x,y)]
- (12) John doesn't have a donkey.
 [1 x: John(x), ¬[2 y: donkey(y), owns(x,y)]]

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Clause (iv): Complex Conditions

(iv) If K and K' are DRSs, then $\neg K$, $K \rightarrow K'$, and $K \lor K'$ are DRS-conditions.

- (13) John doesn't own a donkey. $[_1 x: John(x), \neg [_2 y: donkey(y), owns(x,y)]]$
- (14) If John owns a donkey, he likes it. $[_1 : [_2 x, y: John(x), donkey(y), owns(x,y)] \rightarrow [_3 : likes(x,y)]]$
- (15) John owns a donkey or a horse. $[_1 x: John(x), [_2 y: donkey(y), owns(x,y)] \lor [_3 : horse(y), owns(x,y)]]$

Note: In the last example involving disjunction, we follow Simons (1996), p. 251, who argues to deal with disjunction by assuming *just one entity* y which is either a donkey or a horse. Also, *John(x)* here has to be *outside* of the two DRSs connected by disjunction.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Clause (v): Quantification

(v) If K and K' are DRSs and x is a discourse referent, then $K(\forall x)K'$ is a DRS-condition.

- (16) Every farmer who owns a donkey, likes it. $[_1 : [_2 x, y: farmer(x), donkey(y), owns(x,y)] (\forall x) [_3 : likes(x,y)]]$
- (17) Some farmer who owns a donkey, likes it. $[_1 : [_2 x, y: farmer(x), donkey(y), owns(x,y)] (\exists x) [_3 : likes(x,y)]]$

Note: While in clause (v) Geurts & Beaver (2007) only define the case of the universal quantifier, at another point they state: "[...] a condition of the form K(Qx)K', where Q may be any quantifier [...]", which suggests that the same definition holds for the existential quantifier.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Merging of DRSs

Given the set-theoretic definition of DRSs, **merging** of two (or more) DRSs (here K and K') is defined as their **pointwise union** (\oplus) such that we have

$$K \oplus K' = \langle U_K \cup U_{K'}, Con_K \cup Con_{K'} \rangle.$$

(18) A farmer chased a donkey. He caught it.
[x, y: farmer(x), donkey(y), chased(x,y)] ⊕ [v, w: caught(v, w)] =
[x, y, v, w: farmer(x), donkey(y), chased(x,y), caught(v,w)];
such that

 $U_{K} \cup U_{K'} = \{x, y, \underline{v}, \underline{w}\}$ $Con_{K} \cup Con_{K'} = \{farmer(x), donkey(y), chased(x,y), caught(v,w)\}$ Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Discourse Representation Theory II

(1)

Lecture 15:

Lecture 16: Implicature

Lecture 17: Presupposition

Merging of DRSs

The way merging is defined in DRT it follows that there is "no principled distinction between (clausal) conjunction and sentence concatenation." Therefore, in the syntax of the DRT language, we do not need a definition involving logical "and" (\wedge).

Geurts & Beaver (2007), p. 12.

- (19) A farmer chased a donkey. He caught it.
- (20) A farmer chased a donkey **and** he caught it.

Both natural language sentences are equally represented by the DRSs repeated from above:

(21) [x, y: farmer(x), donkey(y), chased(x,y)] \oplus [v, w: caught(v, w)] = [x, y, v, w: farmer(x), donkey(y), chased(x,y), caught(v,w)] Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Accessibility: Formal Definition

"Accessibility is a relation between DRSs that is transitive² and reflexive,³ i.e. it is a preorder. More in particular, it is the smallest preorder for which the following holds, for all DRSs K, K', and K'': if Con_{K} contains a condition of the form ...

- \blacktriangleright $\neg K'$, then K is accessible to K',
- $K' \vee K''$, then K is accessible to K' and K'',⁴
- $K' \to K''$, then K is accessible to K' and K' is accessible to K'',
- $K'(\forall x)K''$, then K is accessible to K' and K' is accessible to K''."

Geurts & Beaver (2007), p. 13.

²If a DRS K is accessible to K', and K' is accessible to K'', then K is also accessible to K'', but not the other way around.

³Every DRS is accessible to itself.

⁴But note that in this particular case of logical "or", K' is not accessible to K''.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

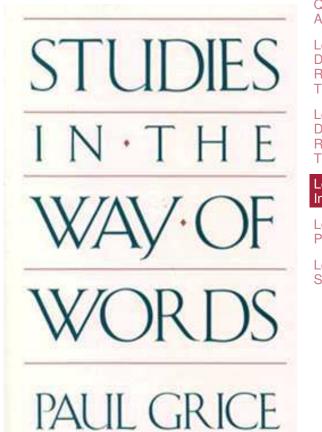
Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Faculty of Philosophy General Linguistics

Lecture 16: Implicature



Historical Overview

Grice, Paul (1975). *Studies in the way of words.* Cambridge, Massachusetts: Harvard University Press.

"[...] while it is no doubt true that the formal devices [of formal semantic frameworks] are especially amenable to systematic treatment by the logician, it remains the case that there are very many inferences and arguments, expressed in natural language and not in terms of these devices, which are nevertheless valid. [...] I shall therefore inquire into the general conditions that, in one way or another, apply to conversation as such [...]"

Grice (1975), p. 23-24.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Grice's Maxims

- (5) The Cooperative Principle (Grice 1975: 45) Make your conversational contribution such as is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged.
- (6) The Maxims of Conversation (Grice 1975: 45–46)

QUALITY: Try to make your contribution one that is true.

1. Do not say what you believe to be false.

2. Do not say that for which you lack adequate evidence. QUANTITY:

1. Make your contribution as informative as is required

(for the current purposes of the exchange).

2. Do not make your contribution more informative than is required.

RELATION (or RELEVANCE): Be relevant.

MANNER: Be perspicuous.

1. Avoid obscurity of expression.

2. Avoid ambiguity.

3. Be brief (avoid unnecessary prolixity).

4. Be orderly.

Kroeger (2019), p. 142.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Failure to Fulfill a Maxim

There are different ways in which a participant of a communicative interaction might fail to fullfill a given maxim:

- They might quietly violate a maxim; in some cases, they will be liable to mislead.
- They might opt out from adhering to either the maxim, or the cooperation principle more generally (or both).
- They might be faced by a clash, i.e. it is impossible to adhere to one maxim without not adhering to another, e.g. a clash between Quality and Quantity.
- They might flout a maxim, that is obviously failing to fulfill it. If none of the above ways of failure to fulfill a maxim seems relevant, the hearer has to take this last possibility into account.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Lecture 18: Speech Acts

Grice (1975), p. 30.

Conversational Implicature

Conversational implicatures are a type of *pragmatic inference* about *what is said* by the speaker (literal meaning) in relation to what they actually *intend to convey* (communicative intention).

(22) A: Can you tell me where the post office is?B: I'm a stranger here myself.

Pragmatic inference by A:

- I assume that B is participating in a rational conversation, i.e. adhering to the cooperative principle and the maxims (if possible).
- B seems to be violating the maxim of relevance.
- I assume we both know (it is part of our common ground) that strangers are unlikely to know the locations of particular places.
- I come to the pragmatic inference that the conversational implicature of B's statement is a more polite way of saying: "No, I cannot."

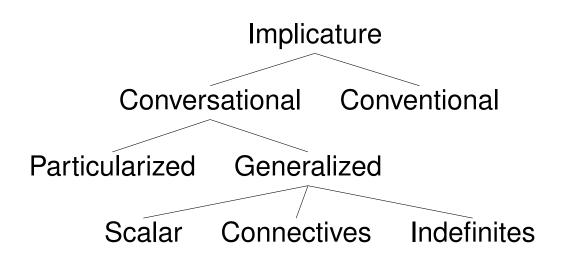
Kroeger (2019), p. 143.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature


Lecture 17: Presupposition

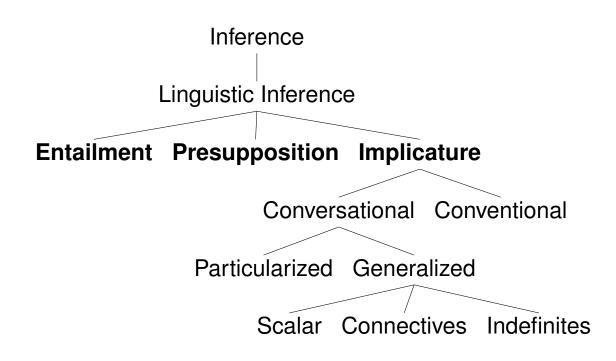
Types of Implicature

The following types of implicature are discussed in Kroeger (2019), p. 146-147.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II


Lecture 16: Implicature

Lecture 17: Presupposition

Entailment, Presupposition, and Implicature

Given that we have established the difference between linguistic and non-linguistic inferences, **implicature** is one of several possible **linguistic inferences**. The others we will discuss are **entailment** and **presupposition**.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Entailment

"Entailment is a type of [linguistic] inference. We say that proposition p "entails" proposition q if p being true **makes it certain** that q is true as well."

Entailments thus require that:

- 1. whenever *p* is true, it is logically necessary that *q* is also true;
- 2. whenever *q* is false, it is logically necessary that *p* is also false;
- 3. these relations follow from the meanings of *p* and *q*, independent of the context of utterance.

Kroeger (2019), p. 36-38.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Criteria and Tests

In the following, we establish a **battery of overall five tests**, which can be used to distinguish entailments from implicatures (and presuppositions in the next step).

Kroeger (2019), p. 151 pp.

	Entailment	Conversational Implicature ⁵
a. Cancellable ⁶	NO	YES
b. Suspendable	NO	YES
c. Reinforceable	NO	YES
d. Negation	NO	NO
e. Question	NO	NO

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Lecture 18: Speech Acts

⁵Note that here only *conversational implicature* is included, as it is unclear whether conventional implicatures will behave the same, or whether these would rather fall with presuppositions.

⁶Also called *defeasible*.

37 | Semantics & Pragmatics, SoSe 2020, Bentz

Faculty of Philosophy General Linguistics

Lecture 17: Presupposition

Historical Background

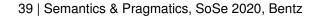
"[...] There is more literature on presupposition than on almost any other topic in pragmatics. [...] The volume of work is in part accounted for by a **long tradition of philosophical interest** [...] In addition presupposition was a **focal area in linguistic theory during the period 1969-76**, because it raised substantial problems for almost all kinds of (generative) linguistic theories [...]"

1970

Presupposition

1980

Levinson (1983), p. 167.


Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Lecture 18: Speech Acts

1960

1990

Frege's View on Presupposition

"If anything is asserted there is always an obvious presupposition⁷ that the **simple or compound proper names used have a reference**. If one asserts 'Kepler died in misery', there is a presupposition that the name 'Kepler' designates something."

Levinson (1983), p. 169 citing Frege (1892), p. 69.

- (23) Kepler died in misery. PRESUPPOSITION: The name 'Kepler' denotes an individual.
- (24) Kepler did *not* die in misery. PRESUPPOSITION: The name 'Kepler' denotes an individual.
- (25) *After* the separation of Schleswig-Holstein from Denmark, ... PRESUPPOSITION: Schleswig-Holstein separated from Denmark.

40 | Semantics & Pragmatics, SoSe 2020, Bentz

Speech Acts

Q&As About

Lecture 14: Discourse Representation

Lecture 15: Discourse

Lecture 16: Implicature Lecture 17:

Representation Theory II

Presupposition

Lecture 18:

Theory I

ALMA and Exam

⁷Frege used the German term *Voraussetzung* here.

Formal Definition

"A statement A presupposes a statement B iff:(i) if A is true, then B is true,(ii) if A is false, then B is [still] true."

Levinson (1983), p. 175, citing Strawson (1952).

- (26) Statement A: Kepler died in misery. PRESUPPOSITION B: The name 'Kepler' denotes an individual.
- (27) Statement $\neg A$: Kepler did *not* die in misery. PRESUPPOSITION B: The name 'Kepler' denotes an individual.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Presupposition Triggers

Over the years, a large number of **presupposition triggers** have been identified (for English). These include but are not limited to:

- (a) Definite descriptions:
 - definite noun phrases
 - possessive phrases
 - restrictive relative clauses
- (b) Factive predicates
- (c) Implicative predicates
- (d) Aspecutal predicates
- (e) Temporal clauses
- (f) Counterfactuals
- (g) Comparisons
- (h) Scalar terms

Kroeger (2019), p. 43.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Tests: Presuppositions

The tests relevant to distinguish entailments and conversational implicatures from presuppositions are mainly the *Negation* and the *Question Test*.

Kroeger (2019), p. 152.

	Entailment	Conversational Implicature	Presupposition
a. Cancellable	NO	YES	sometimes ⁸
b. Suspendable	NO	YES	sometimes
c. Reinforceable	NO	YES	NO
d. Negation	NO	NO	YES
e. Question	NO	NO	YES

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

⁸According to Kroeger (2019), p. 152, some presuppositions seem to be cancellable, "but only if the clause containing the trigger is negated. Presuppositions triggered by positive statements are generally not cancellable."

The Negation-Test

If the inference is **preserved under negation**, then it is said to pass the negation test.

- (28) John did *not* kill the wasp.INFERENCE: #The wasp died.(preserved under negation: NO)
- (29) B: There is *no* garage around the corner.INFERENCE: #You can buy petrol there.(preserved under negation: NO)
- (30) John does not regret that he lied.INFERENCE: John lied.(preserved under negation: YES)

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Test Summary

We then summarize the test results for each inference and compare it to the test-template (in the table above) to decide if it falls in either category.

- (31) John killed the wasp. INFERENCE: The wasp died.
 - cancellable: NO suspendable: NO reinforceable: NO preserved under negation: NO preserved in question: NO
 - \rightarrow entailment

(32) A: I ran out of petrol. B: There is a garage around the corner. INFERENCE: One can buy petrol there.

> cancellable: YES suspendable: YES reinforceable: YES preserved under negation: NO preserved in question: NO

 \rightarrow conversational implicature

John regrets that he lied. (33) INFERENCE: John lied.

> cancellable: NO suspendable: NO? reinforceable: NO preserved under negation: YES preserved in question: YES

Presupposition Lecture 18:

Lecture 16:

Implicature Lecture 17:

Q&As About

Lecture 14: Discourse Representation

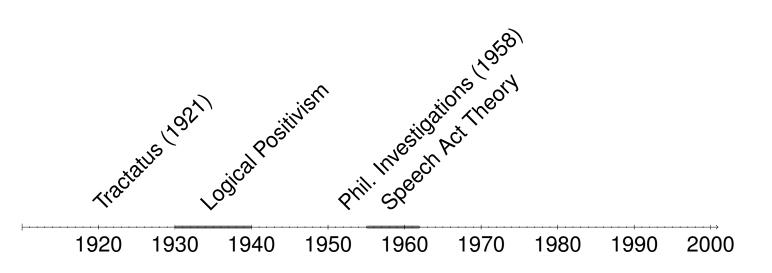
Theory I Lecture 15: Discourse Representation Theory II

ALMA and Exam

Speech Acts

 \rightarrow presupposition

Faculty of Philosophy General Linguistics



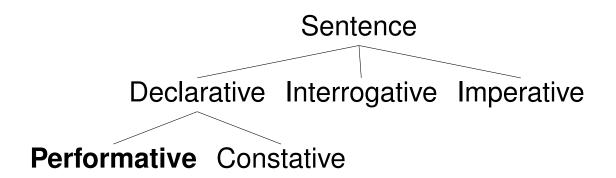
Historical Background

"There are strong parallels between the later Wittgenstein's emphasis on language usage and language-games and Austin's insistence that "the total speech act in the total speech situation is the only actual phenomenon which, in the last resort, we are engaged in elucidating" (1962: 147)."

Levinson (1983), p. 227.

Q&As About ALMA and Exam

- Lecture 14: Discourse Representation Theory I
- Lecture 15: Discourse Representation Theory II


Lecture 16: Implicature

Lecture 17: Presupposition

Performatives

Even if we stay in the domain of *declarative sentences*, there are certain sentences for which we cannot straightforwardly assign a truth value. They are not just used to *say* something about the world, but to actually *do* something, i.e. actively change the world. This type of declaratives is called **performatives** by Austin (1962).

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Performatives: Examples

Austin's own examples:

- (34) 'I do (take this woman to be my lawful wedded wife)' as uttered in the course of the marriage ceremony.
- (35) 'I name this ship the *Queen Elizabeth*' as uttered when smashing the bottle against the stem.
- (36) 'I give and bequeath my watch to my brother' as occurring in a will.
- (37) 'I bet you sixpence it will rain tomorrow.'

Austin (1962), p. 5.

Further examples:

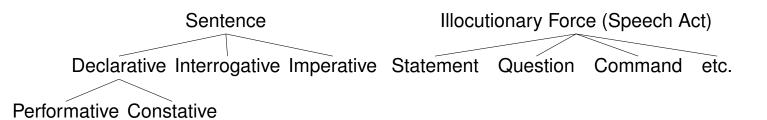
- (38) I hereby sentence you to 10 years in prison.
- (39) I now pronounce you man and wife.
- (40) I declare this meeting adjourned.

Kroeger (2019), p. 181.

Q&As About ALMA and Exam

- Lecture 14: Discourse Representation Theory I
- Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature


Lecture 17: Presupposition

Speech Acts

"We are attuned in everyday conversation not primarily to the sentences we utter to one another, but to the **speech acts** that those utterances are used to perform: *requests*, *warnings*, *invitations*, *promises*, *apologies*, *predictions*, and the like."

Green (2017).

Note: This distinction between *types of sentences* and *types of illocutionary forces/ speech acts* is mostly not strictly adhered to. This is apparent also in Kroeger (2019), p. 181: "Austin called this special class of declarative sentences performatives. He argued that we need to recognize performatives as a new class of speech acts [...] in addition to the commonly recognized speech acts such as statements, questions, and commands.

Q&As About ALMA and Exam

- Lecture 14: Discourse Representation Theory I
- Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Three Parts of Speech Acts

According to Austin, there are three major subparts when performing a speech act:

- 1. Locutionary Act: The act of performing an utterance (phonetically and grammatically).
- 2. **Illocutionary Act**: The act of performing a *statement*, *question*, *command*, etc. by means of its conventional *force* (i.e. what is the locutionary act used for?)
- 3. **Perlocutionary Act**: The act of effecting the audience in a particular way.

Note: The Latin word *locutio* can mean "speech, speaking, phrase, pronunciation" (https://en.pons.com/translate/latin-german/locutio).

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Example

(41) A to B: You can't do that.

SPEECH ACT performed by A:

LOCUTIONARY ACT: Production and pronunciation of the above sentence (in speech, writing or sign), given knowledge of the vocabulary and grammar of English, and the referent of *you*.⁹

ILLOCUTIONARY ACT: Protest against B doing sth., commanding B not to do sth.¹⁰

PERLOCUTIONARY ACT: Stopping B, Annoying B, etc.¹¹

Austin (1962), p. 102.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

⁹Austin would paraphrases this as "He said to me ...".

¹⁰Austin would paraphrase this as "He protested against my doing it".

¹¹Austin would paraphrase this as "He stopped me, annoyed me, etc. ...".

Direct Speech Act

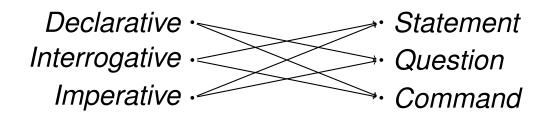
We have a **direct speech act** if the type of sentence (grammatical form) matches the type of illocutionary force (according to general expectation).

Declarative ·	→• Statement
Interrogative	
Imperative	→• Command

Q&As About ALMA and Exam

- Lecture 14: Discourse Representation Theory I
- Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature


Lecture 17: Presupposition

Indirect Speech Act

"We might define an **indirect speech act** (following Searle 1975) as an utterance in which one illocutionary act (the **primary act**) is intentionally performed by means of the performance of another act (the **literal act**). In other words, it is an utterance whose **form does not reflect the intended illocutionary force**."

Kroeger (2019), p. 186.

Q&As About ALMA and Exam

Lecture 14: Discourse Representation Theory I

Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Examples: Indirect Speech Acts

- (42) I want you to leave now. (Declarative) ILLOCUTIONARY FORCE: Giving a command.
- (43) I would like to have a cup of tea, please. (Declarative) ILLOCUTIONARY FORCE: Request for tea.
- (44) Can you pass me the salt? (Interrogative) ILLOCUTIONARY FORCE: Command (rather than request for information).
- (45) Isn't this a beautiful day? (Interrogative)
 ILLOCUTIONARY FORCE: Statement (i.e. rhetorical question, which is not necessarily a request for information).
- (46) Tell me the way to the train station! (Imperative) ILLOCUTIONARY FORCE: Request for Information/Question.
- (47) Look how blue the sky is! (Imperative) ILLOCUTIONARY FORCE: Statement.¹²

¹²Thanks to Tanja Heck for the last two examples.

- Lecture 14: Discourse Representation Theory I
- Lecture 15: Discourse Representation Theory II

Lecture 16: Implicature

Lecture 17: Presupposition

Thank You.

Contact:

Faculty of Philosophy General Linguistics Dr. Christian Bentz SFS Wihlemstraße 19-23, Room 1.24 chris@christianbentz.de Office hours: During term: Wednesdays 10-11am Out of term: arrange via e-mail