Measuring and modeling the impact of non-native speakers on morphological productivity

Christian Bentz cb696@cam.ac.uk

Outline

Background

- Language as a Complex Adaptive System
- Non-native speakers (L2) as drivers of language change

Statistical Modeling

- Case marking and L2 speaker proportions
- Lexical diversity and L2 speaker proportions

Conclusions

• Problems and future directions

Christian Bentz cb696@cam.ac.uk — Lexical diversity 2/38

Language as a Complex Adaptive System

"The **structures of language** emerge from interrelated patterns of experience, **social interaction**, and **cognitive mechanisms**." (Beckner et al., 2009)

Language as a Complex Adaptive System

"The **structures of language** emerge from interrelated patterns of experience, **social interaction**, and **cognitive mechanisms**." (Beckner et al., 2009)

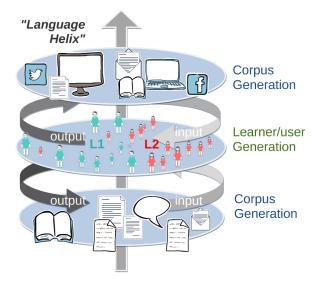
Linguistic Niche Hypothesis

"The level of **morphological specification** is a product of languages adapting to the learning constraints [...] of the speaker population. Complex morphological paradigms [...] present particular learning challenges for **adult learners** [...]" (Lupyan & Dale, 2010)

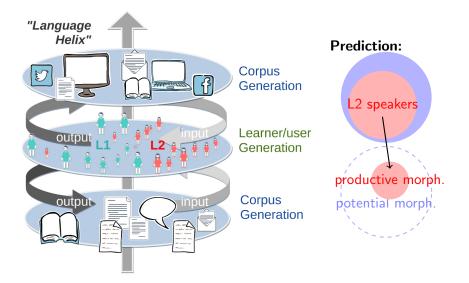
Language as a Complex Adaptive System

"The **structures of language** emerge from interrelated patterns of experience, **social interaction**, and **cognitive mechanisms**." (Beckner et al., 2009)

Linguistic Niche Hypothesis


"The level of **morphological specification** is a product of languages adapting to the learning constraints [...] of the speaker population. Complex morphological paradigms [...] present particular learning challenges for **adult learners** [...]" (Lupyan & Dale, 2010)

Earlier studies


Gell-Mann, 1992; Croft, 2000; Kirby & Hurford, 2002; Ritt, 2004; Christiansen & Chater, 2008

Christian Bentz cb696@cam.ac.uk — Lexical diversity 3/38

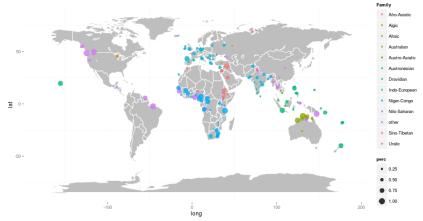
Collecting L2 Data Project with Søren Wichmann, Bodo Winter (at MPI for Evolutionary Anthropology)

Max Planck Institute for Evolutionary Anthropology

Collecting L2 Data Project with Søren Wichmann, Bodo Winter (at MPI for Evolutionary Anthropology)

Max Planck Institute for Evolutionary Anthropology

Dataset of L2 and L1 numbers for 231 languages (56 families, 27 regions)


	SILCode	Stock(Autotyp)				L1 Ethnologue			VativeSpeak()			2 Estimation	
Kutenai	kut	Kutenai	Basin and		Kutenai	12	NA	NA	12 •	s 1990 Canada	+USA: ~310	310	25.83333333
Kongo	kon	Benue-Congo	S Africa	Niger-Cong	o, Atlantic-Co		NA		5955908	5000000	NA	5000000	0.839502558
Aari	aiw	Omotic	Greater A	AA d	South Omotic	155000	NA	NA	155000	13319	NA	13319	0.085929032
Afar	aar	Cushitic	Greater A	AA da	Eastern Cushi	1078200	NA	1.4 mł	1239100	22848	NA	22848	0.01843919
Alaba-K'abeena	alw	Cushitic	Greater A	AA da	Eastern Cushi	162000	NA	NA	162000	29699	NA	29699	0.18332716
Amharic	amh	Semitic	Greater A	AA d	Semitic	17528500	17400000	Officia	17464250	4000000	7000000	5500000	0.314929069
Arabic	arb	Semitic	N Africa	AA	Semitic	221000000	150000000	206,0	192300000	246000000	NA	246000000	1.27925117
Arabic, Algerian	arg	Semitic	N Africa	AA	Semitic	22397000	NA	NA	22397000	3000000	NA	3000000	0.133946511
Arabic, southern	pga	Semitic	N Africa	AA	Semitic	20000	NA	NA	20000	44000	NA	44000	2.2
Arbore	arv	Cushitic	Greater A	AA	Eastern Cushi	4440	NA	NA	4440	3108	NA	3108	0.7
Argobba	agj	Semitic	Greater A	AA da	Semitic	10900	NA	NA	10900	3236	NA	3236	0.296880734
Awngi	awn	Cushitic	Greater A	AA da	Central Cushit	500000	NA	###	428490	64425	NA	64425	0.150353567
Basketo	bst	Omotic	Greater A	AA da	North Omotic	57800	NA	NA	57800	8961	NA	8961	0.155034602
Bench (Gimira)	bcg	Omotic	Greater A	AA	North Omotic	174000	NA	NA	174000	22640	NA	22640	0.130114943
Borna (Shinassha	bwo	Omotic	Greater A	AA da	North Omotic	19900	NA	NA	19900	2276	NA	2276	0.114371859
Bussa	dox	Cushitic	Greater A	AA da	Eastern Cushi	6620	NA	NA	6620	920	NA	920	0.13897281
Dime Dima	dim	Omotic	Greater A	AA da	South Omotic	6500	NA	NA	6500	529	NA	529	0.081384615
Dirasha (Gidole)	gdl	Cushitic	Greater A	AA	Eastern Cushi	90000	NA	NA	90000	7000	NA	7000	0.07777778
Dizi	mdx	Omotic	Greater A	AA da	North Omotic	21100	NA	NA	21100	2054	NA	2054	0.097345972
Dorze	doz	Omotic	Greater A	AA da	North Omotic	20800	NA	NA	20800	3597	NA	3597	0.172932692
Gamo-Gofa-Dawr	gmo	Omotic	Greater A	AA da	North Omotic	1240000	NA	NA	1240000	77883	NA	77883	0.062808871
Gawwada (Dullay	gwd	Cushitic	Greater A	AA	Eastern Cushi	32700	NA	NA	32700	1367	NA	1367	0.041804281
Gedeo Darasa	drs	Cushitic	Greater A	AA da	Eastern Cushi	637000	NA	NA	637000	47950	NA	47950	0.075274725
HadiyyaAdea	hdy	Cushitic	Greater A	AA da	Eastern Cushi	924000	NA	NA	924000	15889	NA	15889	0.017195887
Hamer-Banna	amf	Omotic	Greater A	AA da	South Omotic	42800	NA	NA	42800	7120	NA	7120	0.16635514
Harari Adare	har	Semitic	Greater A	AA	Semitic	21300	NA	NA	21300	7766	NA	7766	0.364600939
Hausa	hau	Chadic	African	AA	West Chadic	24988000	24200000	Officia	24594000	15000000	15000000	15000000	0.609904855
Hebrew	heb	Semitic	Greater M	1e AA	Semitic	5316700	NA	Up to ▸	5316700	NA	4683300	4683300	0.880865951
Kachama-Ganjule	kcx	Omotic	Greater A	AA da	North Omotic	4070	NA	NA	4070	419	NA	419	0.102948403
Kafa	kbr	Omotic	Greater A	AA	South Omotic	570000	NA		570000	46720	NA	46720	0.081964912
Kambaata	ktb	Cushitic	Greater A	AA	Eastern Cushi	570000	NA	NA	570000	79332	NA	79332	0.139178947
Kistane (Soddo)	aru	Semitic	Greater A	AA	Semitic	255000	NA	NA	255000	60538	NA	60538	0.237403922

L2 Data Distribution

Why case marking?

Christian Bentz cb696@cam.ac.uk — Lexical diversity 7/38

Why case marking?

• case marking is **hard to learn for adults**, irrespective of whether their native languages employ case or not (Papadopoulou et al., 2011)

Why case marking?

- case marking is **hard to learn for adults**, irrespective of whether their native languages employ case or not (Papadopoulou et al., 2011)
- there is **psycholinguistic evidence** for case reduction (Gürel, 2000; Haznedar, 2006)

Why case marking?

- case marking is **hard to learn for adults**, irrespective of whether their native languages employ case or not (Papadopoulou et al., 2011)
- there is **psycholinguistic evidence** for case reduction (Gürel, 2000; Haznedar, 2006)
- there is **historical**, **qualitative evidence** for case loss (Trudgill, 2011; Herman& Wright, 2000)

Papadopoulou et al., 2011

• Case marking by Greek native speakers learning Turkish as L2

Papadopoulou et al., 2011

- Case marking by Greek native speakers learning Turkish as L2
- "Cloze task" with gaps in text

Papadopoulou et al., 2011

- Case marking by Greek native speakers learning Turkish as L2
- "Cloze task" with gaps in text

Table 2 Case suffixes: Correct scores per proficiency level

Cases	Level I (N = 35)	Level II (N = 37)	Level III (N = 39)
Specific object (accusative)	21% (29/140)	39% (58/148)	49% (77/156)
Non-specific object (unmarked)	76% (53/70)	64% (47/74)	62% (48/78)
Other cases	28% (253/910)	41% (393/962)	58% (588/1014)
Total	30% (335/1120)	42% (498/1184)	57% (713/1248)

Case marking in the **World Atlas of Language Structures** (Dryer& Haspelmath, 2011)

Christian Bentz cb696@cam.ac.uk — Lexical diversity 9/38

Case marking in the **World Atlas of Language Structures** (Dryer& Haspelmath, 2011)

OF	WORLD ATLAS LANGUAGE STRUCTURES INE	
Feat	ture 49A: Number of Case	s
by Oliv	ver A. Iggesen	
sho	wmap This feature is discussed in c	hapter 49. Related ex
Valu	es	
0	No morphological case-marking	(100 languages)
0	2 cases	(23 languages)
0	3 cases	(9 languages)
0	4 cases	(9 languages)
•	5 cases	(12 languages)
•	6-7 cases	(37 languages)
•	8-9 cases	(23 languages)
•	10 or more cases	(24 languages)
\diamond	Exclusively borderline case-marking	(24 languages)
	total:	261

Case marking in the **World Atlas of Language Structures** (Dryer& Haspelmath, 2011)

Feature 49A: Number of Cases

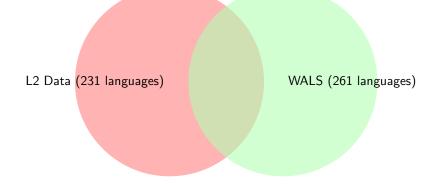
by Oliver A. Iggesen

show map This feature is discussed in chapter 49. Related ex

Values

0	No morphological case-marking	(100 languages)
0	2 cases	(23 languages)
0	3 cases	(9 languages)
0	4 cases	(9 languages)
•	5 cases	(12 languages)
•	6-7 cases	(37 languages)
۲	8-9 cases	(23 languages)
•	10 or more cases	(24 languages)
\diamond	Exclusively borderline case-marking	(24 languages)
	total:	261

Hungarian (Tompa 1968: 206-209)


Nominative:	hajó
Accusative:	hajó-t
Inessive:	hajó-ban
Elative:	hajó-ból
Illative:	hajó-ba
Superessive:	hajó-n
Delative:	hajó-ról
Sublative:	hajó-ra
Adessive:	hajó-nál
Ablative:	hajó-tól
Allative:	hajó-hoz
Terminative:	hajó-ig
Dative:	hajó-nak
Instrumental-Comitative:	hajó-val
Formal:	hajó-képp
Essive:	hajó-ul
Essive-Formal(-Similitive):	hajó-ként
Translative-Factitive:	hajó-vá
Causal-Final:	hajó-ért
Distributive:	hajó-nként
Sociative:	hajó-stul

Statistical Model: Data Overlap

L2 Data (231 languages)

Statistical Model: Data Overlap

Statistical Model: Data Overlap

L2 Data (231 languages) **26 families 16 regions** WALS (261 languages)

Christian Bentz cb696@cam.ac.uk — Lexical diversity 10/38

Statistical Models

Two separate models:

Christian Bentz cb696@cam.ac.uk — Lexical diversity 11/38

Statistical Models

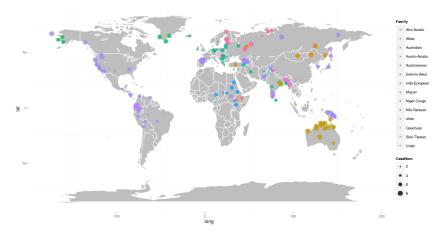
Two separate models:

• a) Are languages **without case** those languages with higher L2 ratios?

Statistical Models

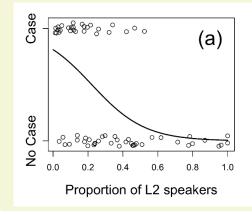
Two separate models:

- a) Are languages without case those languages with higher L2 ratios?
- b) Do languages with more L2 speakers have **fewer case** paradigms?


Model A

Case as a binary variable (case/no case)

- requires **logistic regression** (binary dependent/outcome variable)
- Requires mixed-effects (random and fixed effects) due to non-independence of data points (family and area clusters) (Baayen et al., 2008; Bates et al., 2014; Jäger et al., 2011)


WALS Chapter 49: Number of Cases

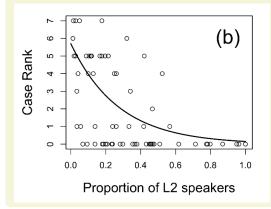
Christian Bentz cb696@cam.ac.uk — Lexical diversity 13/38

Model A: Outcome

Are languages without case those languages with higher L2 percentages? -Yes.

 $\begin{array}{l} \mbox{Statistical} \\ \mbox{Significance} \\ \mbox{coefficient estimates:} \\ \mbox{-}6.57\pm\ 2.03; \\ \mbox{p} = 0.00014 \end{array}$

Christian Bentz cb696@cam.ac.uk — Lexical diversity 14/38


Model B

Case as a continuous variable (no case, 2 cases, 3 cases, etc.)

- requires Poisson or negative binomial regression (continuous dependent/outcome variable)
- Requires mixed-effects (random and fixed effects) due to non-independence of data points (family and area clusters) (Baayen et al., 2008; Bates et al., 2014; Jäger et al., 2011)

Model B: Outcome

Are languages with fewer cases those languages with higher L2 percentages? -Yes.

 $\begin{array}{l} \mbox{Statistical} \\ \mbox{Significance} \\ \mbox{coefficient estimates:} \\ \mbox{-}3.6\pm \ 1.06; \\ \mbox{p} = 0.00062 \end{array}$

Case Marking: Conclusions

 Languages with more L2 speakers tend to have fewer cases or no case marking at all

Case Marking: Conclusions

- Languages with more L2 speakers tend to have fewer cases or no case marking at all
- These trends hold even if family and areal relationships are accounted for

Excurse: How about verbal inflections?

 Kaius Sinnemäki is currently investigating WALS chapter 22A (inflectional synthesis of the verb) http://www.helsinki.fi/~ksinnema/presentations.html

Excurse: How about verbal inflections?

- Kaius Sinnemäki is currently investigating WALS chapter 22A (inflectional synthesis of the verb) http://www.helsinki.fi/~ksinnema/presentations.html
- There is a slight negative trend when correlated with L2 percentages, but **not significant** in mixed-effects models

(Potential) Reasons

• Differences in learning difficulties between case marking and verbal inflection (suggested by Papadopoulou et al. 2011)?

Excurse: How about verbal inflections?

- Kaius Sinnemäki is currently investigating WALS chapter 22A (inflectional synthesis of the verb) http://www.helsinki.fi/~ksinnema/presentations.html
- There is a slight negative trend when correlated with L2 percentages, but **not significant** in mixed-effects models

(Potential) Reasons

- Differences in learning difficulties between case marking and verbal inflection (suggested by Papadopoulou et al. 2011)?
- Smaller sample size (36 languages) undermines significant p-values?

Excurse: How about verbal inflections?

- Kaius Sinnemäki is currently investigating WALS chapter 22A (inflectional synthesis of the verb) http://www.helsinki.fi/~ksinnema/presentations.html
- There is a slight negative trend when correlated with L2 percentages, but **not significant** in mixed-effects models

(Potential) Reasons

- Differences in learning difficulties between case marking and verbal inflection (suggested by Papadopoulou et al. 2011)?
- Smaller sample size (36 languages) undermines significant p-values?
- Categories in WALS chapter 22A do not reflect learnability?

General Problems

 WALS chapters are only very coarse grained descriptions of linguistic structures

General Problems

- WALS chapters are only very **coarse grained** descriptions of linguistic structures
- They tell us nothing about the actual productivity of morphological markers

General Problems

- WALS chapters are only very **coarse grained** descriptions of linguistic structures
- They tell us nothing about the actual productivity of morphological markers
- overall morphological productivity in a language is driven by a multitude of **different markers**

Example: German cases

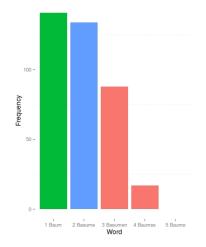
• According to WALS German has four nominal cases (Nom, Acc, Dat, Gen)

Example: German cases

- According to WALS German has four nominal cases (Nom, Acc, Dat, Gen)
- But there is a lot of **case syncretism** for individual noun declensions

Example: German cases

- According to WALS German has four nominal cases (Nom, Acc, Dat, Gen)
- But there is a lot of **case syncretism** for individual noun declensions
- Frequencies of case marked forms might differ strongly



Case Syncretism

	SG	PL
NOM	Baum (Eng. tree)	Bäume (Eng. trees)
ACC	Baum	Bäume
DAT	Baum(e)	Bäume n
GEN	Baum es	Bäume

Word Frequencies (CELEX)

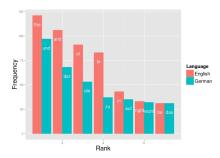
And Alternative Commercial assessment

Case Syncretism

	SG	PL
NOM	Baum (Eng. tree)	Bäume (Eng. trees)
ACC	Baum	Bäume
DAT	Baum(e)	Bäume n
GEN	Baum es	Bäume

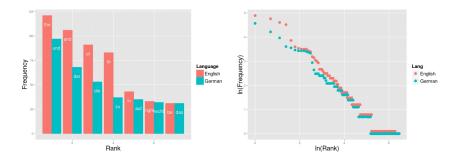
Towards a cross-linguistic measure of morphological productivity

- Data: whole corpora with constant information content (parallel texts)
- Method: frequency distributions across languages


Measuring overall morphological productivity in corpora

Frequency distributions: Order types (word forms delimited by white spaces) according to their token frequencies (Zipf,1932,1949)

Measuring overall morphological productivity in corpora


Frequency distributions: Order types (word forms delimited by white spaces) according to their token frequencies (Zipf,1932,1949)

Measuring overall morphological productivity in corpora

Frequency distributions: Order types (word forms delimited by white spaces) according to their token frequencies (Zipf,1932,1949)

Christian Bentz cb696@cam.ac.uk — Lexical diversity 23/38

• inflectional morphology (Bentz et al., 2014)

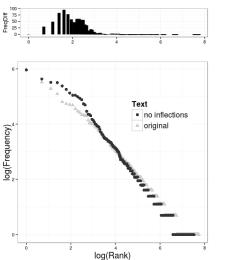
Christian Bentz cb696@cam.ac.uk — Lexical diversity 24/38

- inflectional morphology (Bentz et al., 2014)
- derivational morphology

- inflectional morphology (Bentz et al., 2014)
- derivational morphology
- compounds

- inflectional morphology (Bentz et al., 2014)
- derivational morphology
- compounds
- clitics

- inflectional morphology (Bentz et al., 2014)
- derivational morphology
- compounds
- clitics
- base vocabulary



- inflectional morphology (Bentz et al., 2014)
- derivational morphology
- compounds
- clitics
- base vocabulary
- orthography

- inflectional morphology (Bentz et al., 2014)
- derivational morphology
- compounds
- clitics
- base vocabulary
- orthography
- etc.

German inflections

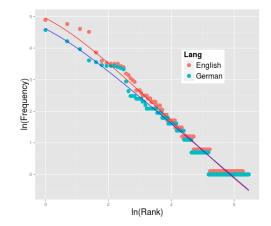
Baum 141 Bäume 134 Bäumen 88 Baum 380 Baumes 17 Baume 0

Morphological productivity and lexical diversity

Finding: Productive morphology creates **new word types**, more **low frequency items**, and hence high **lexical diversity**

Morphological productivity and lexical diversity

Finding: Productive morphology creates **new word types**, more **low frequency items**, and hence high **lexical diversity**

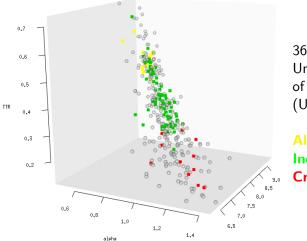

$\Downarrow \Downarrow \Downarrow \Downarrow$

We can use lexical diversity measures as proxy for overall morphological productivity (Bentz et al., 2014; Popescu et al., 2009; Ha et al., 2006)

Lexical diversity measures

- Zipf-Mandelbrot's α
- Shannon entropy (H)
- Type-Token Ratios (TTR)

Lexical diverstiy measures


Inflection creates higher lexical diversity

- \rightarrow higher entropy (higher uncertainty)
- \rightarrow higher type-token ratios
- \rightarrow lower ZM's α

Lexical Diversity Space

29/38

369 texts the Universal Declaration of Human Rights (UDHR)

NIVERSITY OF

CAMBRIDGE

Altaic Indo-European Creole

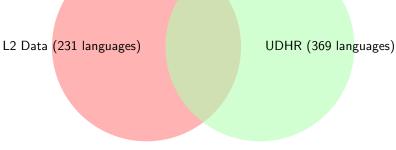
CAMBRIDGE ASSESSMEN

Statistical Model

• Are languages with **higher lexical diversities** (i.e. higher morphological productivity) those languages with lower L2 proportions?

Statistical Model

Lexical diversity measures as continuous variables


- requires linear regression: continuous dependent/outcome variables: α,H,TTR continuous predictors: L2 proportions (fixed effect)
- requires mixed-effects (random and fixed effects) due to non-independence of data points (family and area clusters) (Baayen et al., 2008; Bates et al., 2014; Jäger et al., 2011)

Statistical Model: Data Overlap

L2 Data (231 languages)

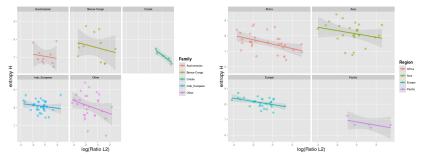
Statistical Model: Data Overlap

Statistical Model: Data Overlap

L2 Data (231 languages) L2 Data (231 languages) 15 regions UDHR (369 languages)

Christian Bentz cb696@cam.ac.uk — Lexical diversity 32/38

Results


All coefficients point in the right direction. However, only coefficients for H and TTR are significant

Dependent	Fixed effects	Random effects	Coefficient (L2 ratio)	Likelihood ratio test	
variable				df (L2 ratio)	χ^2 (L2 ratio)
ZM's α	log (L2), script	family, region	0.023	1	1.38
Entropy H	log (L2), script	family, region	-0.14	1	9.28***
TTR	log (L2), script	family, region	-0.026	1	7.11**

*p < 0.05; **p < 0.01; ***p < 0.001

L2 effect across families and regions

Christian Bentz cb696@cam.ac.uk — Lexical diversity 34/38

Christian Bentz cb696@cam.ac.uk — Lexical diversity 35/38

• Correlation is not causation (Roberts & Winters, 2012,2013) \rightarrow but there is independent psycholinguistic and historical evidence.

- Correlation is not causation (Roberts & Winters, 2012,2013) \rightarrow but there is independent psycholinguistic and historical evidence.
- Synchronic data and diachronic implications \rightarrow Diachronic study on frequency distributions in Old English and Modern English (Bentz et al., 2014)

- Correlation is not causation (Roberts & Winters, 2012,2013) → but there is independent psycholinguistic and historical evidence.
- Synchronic data and diachronic implications \rightarrow Diachronic study on frequency distributions in Old English and Modern English (Bentz et al., 2014)
- Parallel texts use doculects → Frequency distributions show similar behavior with regards to inflection across different types of texts (Bentz et al., 2014; Corral et al. ,2014; Popescu et al., 2009; Ha et al., 2006)

Conclusions

Our statistical analyses suggest:

- Languages with higher L2 proportions have fewer cases or no case marking at all
- Languages with higher L2 proportions have lower lexical diversities (at least when measured with entropy H or TTR)
- · Both effects are stable across families and regions
- This is evidence that languages **adapt** to **learning constraints** of speaker populations

Collaborators

Douwe Kiela

Felix Hill

Andrew Caines

Dimitrios Alikaniotis

Paula Buttery

Christian Bentz cb696@cam.ac.uk — Lexical diversity 37/38

Thank You!

jchris@christianbentz.de¿