The impact of non-native speakers on word forms and (potentially) word order

Christian Bentz cb696@cam.ac.uk

Outline

Background

- Language as a Complex Adaptive System
- Non-native speakers (L2) as drivers of language change

Statistical Modeling

- Case marking and L2 speaker proportions
- Word forms and L2 speaker proportions

Future Directions

- Word forms and word order
- Conclusions

Language as a Complex Adaptive System

"The structures of language emerge from interrelated patterns of experience, social interaction, and cognitive mechanisms." (Beckner et al., 2009)

Language as a Complex Adaptive System

"The **structures of language** emerge from interrelated patterns of experience, **social interaction**, and **cognitive mechanisms**." (Beckner et al., 2009)

Linguistic Niche Hypothesis

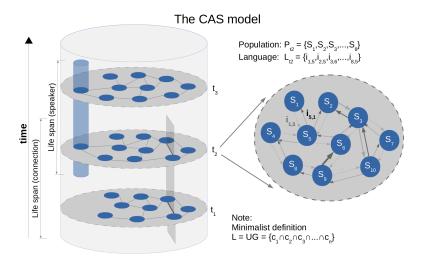
"The level of **morphological specification** is a product of languages adapting to the learning constraints [...] of the speaker population. Complex morphological paradigms [...] present particular learning challenges for **adult learners** [...]" (Lupyan & Dale, 2010)

Language as a Complex Adaptive System

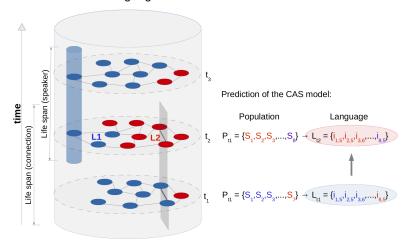
"The **structures of language** emerge from interrelated patterns of experience, social interaction, and cognitive mechanisms." (Beckner et al., 2009)

Linguistic Niche Hypothesis

"The level of morphological specification is a product of languages adapting to the learning constraints [...] of the speaker population. Complex morphological paradigms [...] present particular learning challenges for adult learners [...]" (Lupyan & Dale, 2010)


Earlier studies

Gell-Mann, 1992; Croft, 2000; Kirby & Hurford, 2002; Ritt, 2004; Christiansen & Chater, 2008



Language contact in the CAS model

Collecting L2 Data

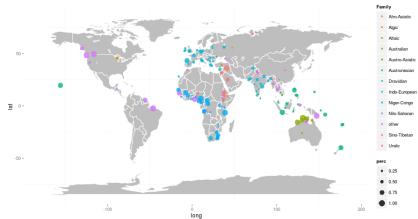
Project with Søren Wichmann, Bodo Winter (at MPI for Evolutionary Anthropology)

Collecting L2 Data

Project with Søren Wichmann, Bodo Winter (at MPI for Evolutionary Anthropology)

Max Planck Institute for Evolutionary Anthropology

Dataset of L2 and L1 numbers for **226 languages** (56 families, 27 regions)


							•	_	(,	0	,
Language	SILCode	Stock(Autotyp)				L1 Ethnologue				L2 Ethnologue		2 Estimation L	
Kutenai	kut	Kutenai	Basin and	Ktn	Kutenai	12	NA		12	s 1990 Canada	+USA: ~310	310	25.83333333
Kongo	kon	Benue-Congo	S Africa	Niger-Cong	o, Atlantic-Co		NA		5955908	5000000	NA	5000000	0.839502558
Aari	aiw	Omotic	Greater Ab		South Omotic		NA		155000	13319	NA		0.085929032
Afar	aar	Cushitic	Greater Ab	AA	Eastern Cushi	1078200	NA	1.4 m	1239100	22848	NA	22848	0.01843919
Alaba-K'abeena	alw	Cushitic	Greater Ab	AA	Eastern Cushi	162000	NA	NA.	162000	29699	NA	29699	0.18332716
Amharic	amh	Semitic	Greater Ab	AA	Semitic	17528500	17400000		17464250	4000000	7000000	5500000	0.314929069
Arabic	arb	Semitic	N Africa	AA	Semitic		150000000	206,0	192300000	246000000	NA	246000000	
Arabic, Algerian (arq	Semitic	N Africa	AA	Semitic	22397000	NA		22397000	3000000	NA	3000000	0.133946511
Arabic, southern	pga	Semitic	N Africa	AA	Semitic	20000	NA		20000	44000	NA	44000	2.2
Arbore	arv	Cushitic	Greater Ab	AA	Eastern Cushi		NA		4440	3108	NA	3108	0.7
Argobba	agj	Semitic	Greater Ab	AA	Semitic	10900	NA	NA.	10900	3236	NA	3236	0.296880734
Awngi	awn	Cushitic	Greater Ab	AA	Central Cushit	500000	NA	###	428490	64425	NA	64425	0.150353567
Basketo	bst	Omotic	Greater Ab	AA	North Omotic	57800	NA		57800	8961	NA	8961	0.155034602
Bench (Gimira)	bcq	Omotic	Greater Ab	AA	North Omotic	174000	NA		174000	22640	NA	22640	0.130114943
Borna (Shinasshi	bwo	Omotic	Greater Ab	AA	North Omotic	19900	NA	NA.	19900	2276	NA	2276	0.114371859
Bussa	dox	Cushitic	Greater Ab	AA	Eastern Cushi	6620	NA	NA.	6620	920	NA	920	0.13897281
Dime Dima	dim	Omotic	Greater Ab	AA	South Omotic	6500	NA		6500	529	NA	529	0.081384615
Dirasha (Gidole)	gdl	Cushitic	Greater Ab	AA	Eastern Cushi		NA		90000	7000	NA	7000	0.077777778
Dizi	mdx	Omotic	Greater Ab	AA	North Omotic	21100	NA		21100	2054	NA		0.097345972
Dorze	doz	Omotic	Greater Ab	AA	North Omotic	20800	NA	NA.	20800	3597	NA	3597	0.172932692
Gamo-Gofa-Dawr	gmo	Omotic	Greater Ab	AA	North Omotic	1240000	NA	NA.	1240000	77883	NA	77883	0.062808871
Gawwada (Dullay	gwd	Cushitic	Greater Ab	AA	Eastern Cushi		NA		32700	1367	NA	1367	0.041804281
Gedeo Darasa	drs	Cushitic	Greater Ab	AA	Eastern Cushi		NA		637000	47950	NA	47950	0.075274725
HadiyyaAdea	hdy	Cushitic	Greater Ab		Eastern Cushi		NA		924000	15889	NA		0.017195887
Hamer-Banna	amf	Omotic	Greater Ab	AA	South Omotic	42800	NA	NA.	42800	7120	NA	7120	0.16635514
Harari Adare	har	Semitic	Greater Ab	AA	Semitic	21300	NA		21300	7766	NA	7766	0.364600939
Hausa	hau	Chadic	African	AA	West Chadic	24988000	24200000	Officia	24594000	15000000	15000000	15000000	0.609904855
Hebrew	heb	Semitic	Greater Me	AA	Semitic	5316700	NA	Up to >	5316700	NA	4683300	4683300	0.880865951
Kachama-Ganjule	kcx	Omotic	Greater Ab	AA	North Omotic	4070	NA		4070	419	NA	419	0.102948403
Kafa	kbr	Omotic	Greater Ab	AA	South Omotic	570000	NA	NA.	570000	46720	NA	46720	0.081964912
Kambaata	ktb	Cushitic	Greater Ab	AA	Eastern Cushi		NA		570000	79332	NA		0.139178947
Kistane (Soddo)	gru	Semitic	Greater Ab	AA	Semitic	255000	NA	NA.	255000	60538	NA	60538	0.237403922

L2 Data Distribution

What can we predict using non-native speaker data?

Qualitative hypothesis

 Languages with more non-native speakers tend to simplify morphological marking (Wray& Grace, 2007; McWhorter, 2002, 2007; Trudgill, 2011)

Quantitative evidence

- \bullet Bigger language populations \rightarrow less morphological elaboration (Lupyan& Dale 2010)
- More non-native speakers → less case marking (Bentz& Winter, 2012, 2013)

Both Lupyan& Dale (2010) and Bentz& Winter (2012,2013) used the World Atlas of Language Structures (WALS)

- Both Lupyan& Dale (2010) and Bentz& Winter (2012,2013) used the World Atlas of Language Structures (WALS)
- WALS is a helpful but coarse grained source for typological data

- Both Lupyan& Dale (2010) and Bentz& Winter (2012,2013)
 used the World Atlas of Language Structures (WALS)
- WALS is a helpful but coarse grained source for typological data

Example

 According to WALS German has four nominal cases (Nom, Acc, Dat, Gen)

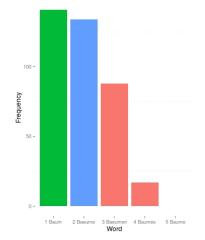
- Both Lupyan & Dale (2010) and Bentz & Winter (2012,2013) used the World Atlas of Language Structures (WALS)
- WALS is a helpful but coarse grained source for typological data

Example

- According to WALS German has four nominal cases (Nom, Acc, Dat, Gen)
- But there are up to 37 different declension classes
- case syncretism in individual noun declensions

Case Syncretism

	SG	PL
NOM	Baum (Eng. tree)	Bäume (Eng. trees)
ACC	Baum	Bäume
DAT	Baum(e)	Bäume n
GEN	Baumes	Bäume



Word Frequencies (CELEX)

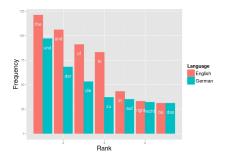
Case Syncretism

	SG	PL
NOM	Baum (Eng. tree)	Bäume (Eng. trees)
ACC	Baum	Bäume
DAT	Baum(e)	Bäume n
GEN	Baumes	Bäume

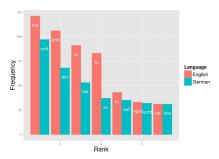
Data: Parallel texts (constant content)

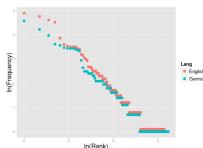
Data: Parallel texts (constant content)

- Parallel Bible Corpus (810 languages, ca. 20000 words per language)
- Universal Declaration of Human Rights (376 languages, ca. 2000 words per language)
- European Parliament Corpus (21 languages, ca. 7 million words per language)

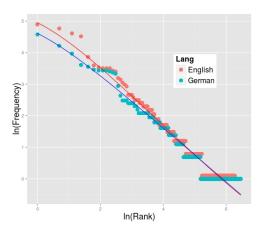

Method: Order types (word forms delimited by white spaces) according to their token frequencies (Zipf,1932,1949)

Method: Order types (word forms delimited by white spaces) according to their token frequencies (Zipf,1932,1949)





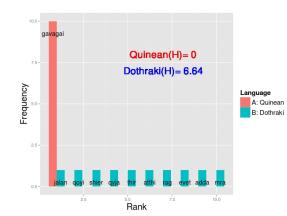
Method: Order types (word forms delimited by white spaces) according to their token frequencies (Zipf,1932,1949)



Zipf-Mandelbrot's law (Zipf,1949; Mandelbrot, 1953)

$$f(r_i) = \frac{C}{(\beta + r_i)^{\alpha}},$$

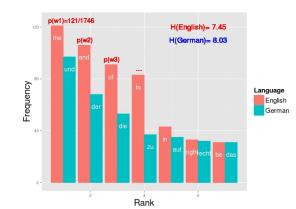
$$i = 1, 2, \dots, n$$



Shannon entropy (Shannon & Weaver, 1949)

$$H = -K \sum_{i=1}^{k} p_i \times log_2(p_i)$$

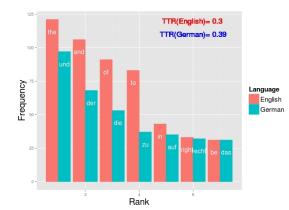
 p_i : $\frac{frequency\ of\ w_i}{total\ number\ of\ tokens}$



1949)

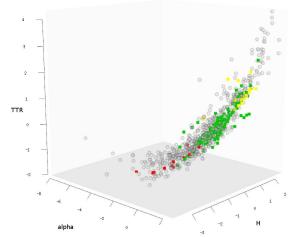
$$H = -K \sum_{i=1}^{k} p_i \times log_2(p_i)$$

frequency of w_i



Scaled values for 647 languages of 83 families (PBC, UDHR, EPC)

Altaic Indo-European Creole



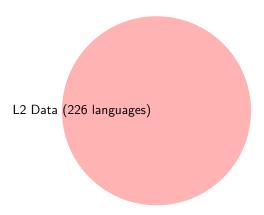
Lexical Diversity Space

Scaled values for 647 languages of 83 families (PBC, UDHR, EPC)

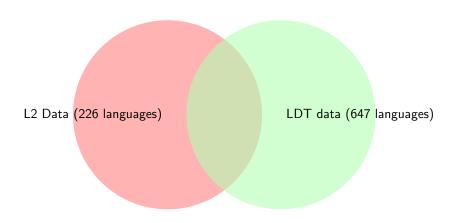
Altaic Indo-European Creole

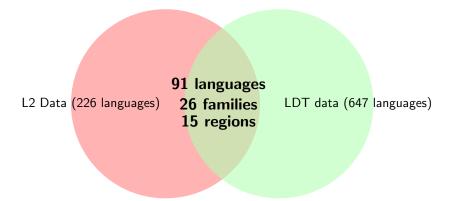
 Are languages with higher lexical diversities (i.e. higher morphological productivity) those languages with lower L2 proportions?

Statistical Model


Predicting lexical diversity from L2 proportions

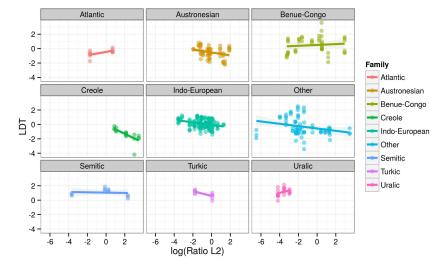
- requires linear regression: continuous dependent/outcome variable: LDTs scaled continuous predictors: L2 proportions (fixed effect)
- requires mixed-effects (random and fixed effects) due to non-independence of data points (family, region, text type, LDT measure) (Baayen et al., 2008; Bates et al., 2014; Jäger et al., 2011)




Statistical Model: Data Overlap

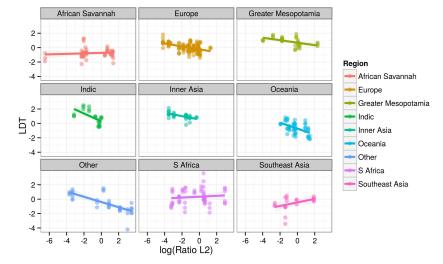
Statistical Model: Data Overlap

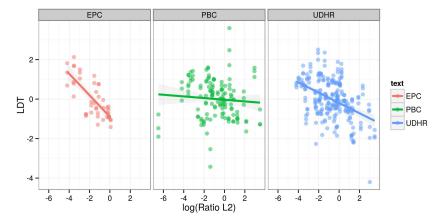
Statistical Model: Data Overlap

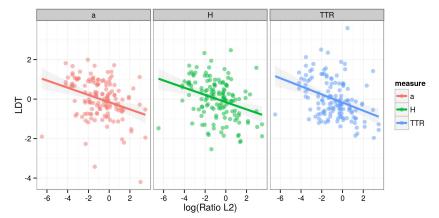


Results					
Dependent	Fixed	Random	β	SE	p-value
LDT scaled	log(L2/L1)	family	-0.2772	0.1329	0.0375
		region			
		measure			
		text type			
		ISO code			

LDT and L2 proportions across families




LDT and L2 proportions across regions


LDT and L2 proportions across text types

LDT and L2 proportions across measures

Lexical diversity: Conclusions

• Languages with more non-native speakers tend to have lower lexical diversity

Lexical diversity: Conclusions

- Languages with more non-native speakers tend to have lower lexical diversity
- These trends hold across *most* families, regions, text types and the LDT measures used

Further Question

• Are some languages are more/less efficient at encoding information?

Further Question

 Are some languages are more/less efficient at encoding information?

Suggestion

 A lack of lexical diversity might be made up for by encoding of information at a different level (constructions, fixed word order, multi word expressions)

Further Question

 Are some languages are more/less efficient at encoding information?

Suggestion

- A lack of lexical diversity might be made up for by encoding of information at a different level (constructions, fixed word order, multi word expressions)
- Is there a trade-off between range of word forms and flexibility of word order?

Lexical Diversity and Word Order

• **Permutation entropy**: Reflects the mutual word order flexibility in ngrams, i.e. word sequences (Zhang et al. 2006; Ramisch et al. 2008)

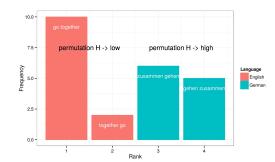
Lexical Diversity and Word Order

- Permutation entropy: Reflects the mutual word order flexibility in ngrams, i.e. word sequences (Zhang et al. 2006; Ramisch et al. 2008)
- $PE = 0 \rightarrow word order is fixed$

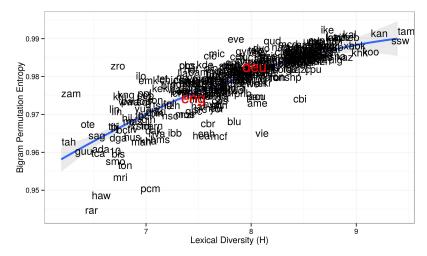
Lexical Diversity and Word Order

- Permutation entropy: Reflects the mutual word order flexibility in ngrams, i.e. word sequences (Zhang et al. 2006; Ramisch et al. 2008)
- $PE = 0 \rightarrow word order is fixed$
- $PE = 1 \rightarrow word order is free$

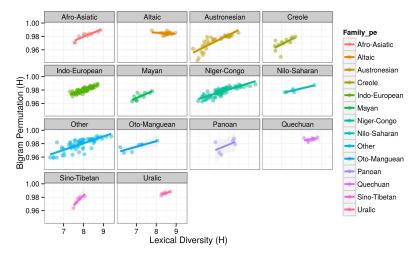
Permutation entropy


- PE = 0 \rightarrow word order is *fixed*
- PE = 1
 - \rightarrow word order is *free*

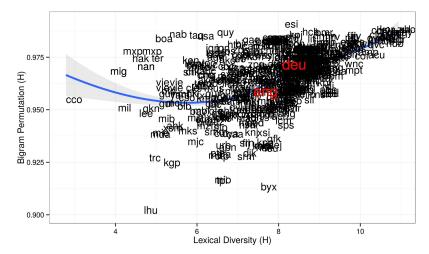
Permutation entropy (PE)


- PE = 0
 → word order is fixed
- PF = 1
 - \rightarrow word order is *free*

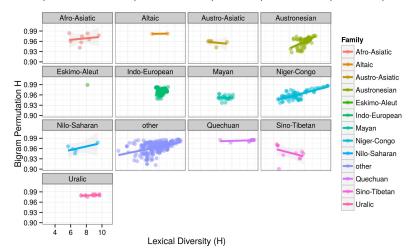
LDT (measured in H) versus PE (average) for UDHR



LDT (measured in H) versus PE (average) for UDHR (Families)



LDT (measured in H) versus PE (average) for Bible



LDT (measured in H) versus PE (average) for Bible (Families)

Our statistical analyses suggest:

Our statistical analyses suggest:

 Languages with higher L2 proportions tend to have fewer word forms, i.e. lower lexical diversities

Our statistical analyses suggest:

- Languages with higher L2 proportions tend to have fewer word forms, i.e. lower lexical diversities
- This effect holds for most families and regions, and for all text types and measures (in our sample)

Our statistical analyses suggest:

- Languages with higher L2 proportions tend to have fewer word forms, i.e. lower lexical diversities
- This effect holds for most families and regions, and for all text types and measures (in our sample)
- There is evidence that lexical diversities are strongly, positively correlated with **permutation entropies** (word orders?)

Potential implications for language change:

Potential implications for language change:

Higher L2 proportions → fewer word forms → fixed word order?

Potential implications for language change:

- Higher L2 proportions → fewer word forms → fixed word order?
- Languages trade off information encoding strategies (word forms vs. word order) (?)
- Languages are adaptive systems shaped by the cognitive niche of speaker populations

Collaborators

Douwe Kiela

Felix Hill

Andrew Caines

Dimitrios Alikaniotis

Paula Buttery

Thank You!

¡chris@christianbentz.de¿