Causality in historical language change

Christian Bentz cb696@cam.ac.uk

Outline

Part 1: Theory

- Classical theories and the internal/external distinction
- Adaptive systems and the causal/referential distinction

Part 2: Analyses

• Lexical diveristy and L2 speaker proportions

Problems

- inferring causality
- information encoding efficiency of languages
- etc.

PART I

The distinction of internal and external causes of change

- Sociolinguistics (Croft, 2000; Jones & Esch, 2002; Jones & Singh, 2005)
- Genetic Linguistics (Thomason & Kaufman, 1988)
- Principles & Parameters (Briscoe, 2000a, 2000b; Clark & Roberts, 1993; Lightfoot, 1979; Pintzuk, Tsoulas, & Warner, 2000; Yang, 2000)

Sociolinguistics and Genetic Linguistics

- internal: languages follow 'natural', 'normal' and 'regular' paths of change, according to general principles such as assimilation, analogical extension and analogical leveling (Thomason & Kaufman, 1988: 22pp.; Jones & Singh 2005: 18-19)
- external: language contact, i.e. child bilingualism or adult second language learning (L2)

Examples

- internal: OE stanas, scipu, sorga, naman → PDE stones, ships, sorrows, names (analogical extension)
- external: OE pronouns replaced by Old Norse pronouns hie/heo, him/hira, heom/heora → θeir, θeim, θeira (borrowing)

Principle & Parameter view

- internal: innate set of parameters (UG) that limits the space of possible grammars (Yang, 2000: 232; Clark & Roberts, 1993: 340; Biberauer, Holmberg, Roberts, & Sheehan, 2010)
- **external**: refers to the varying language input (causing parameter setting) during acquisition

Problems (see Jones & Singh, 2005: 25-26)

- **Sociolinguistics/Genetic Linguistics**: Explain *what* is happening in great detail, but not *why* it is happening (i.e. causation). How do 'internal' causes work, what are the triggering events?
- **Principles & Parameters**: UG as 'internal' cause is too broad, i.e. it is by definition universal across all languages, and does not predict anything specific about language change

Language as a Complex Adaptive System

"The **structures of language** emerge from interrelated patterns of experience, **social interaction**, and **cognitive mechanisms**." (Beckner et al., 2009)

Language as a Complex Adaptive System

"The **structures of language** emerge from interrelated patterns of experience, **social interaction**, and **cognitive mechanisms**." (Beckner et al., 2009)

Earlier studies

Gell-Mann, 1992; Croft, 2000; Kirby & Hurford, 2002; Ritt, 2004; Christiansen & Chater, 2008

Definitions:

 $P = \{S_1, S_2, \dots, S_{10}\}$

Language (accumulative): $L_{acc} = (i_{1,2}, i_{2,1}, \dots, i_{10,9})$

Language (minimalist): $\mathsf{L}_{\min} = \mathsf{C}_1 \cap \mathsf{C}_2 \cap \ldots \cap \mathsf{C}_{10}$

S: Speaker

Christian Bentz cb696@cam.ac.uk — Causality 15/48

Question: What about the internal/external, i.e. native speaker/non-native speaker distinction?

"[...] the traditional distinction between **language-external** and **language-internal causes** for linguistic change and evolution may turn out to be of little interest in the end."

(Bickel, 2013: 13)

Population drift

Population drift

Question:

Is the population drift the **cause** for Language A to use stanas, scipu, sorga, naman, and Language B to use stones, ships, sorrows and names?

Christian Bentz cb696@cam.ac.uk — Causality 17/48

Population drift

Question:

Is the population drift the **cause** for Language A to use stanas, scipu, sorga, naman, and Language B to use stones, ships, sorrows and names?

(No). The population drift might be an amplifier for the change but not the cause.

Christian Bentz cb696@cam.ac.uk — Causality 18/48

UNIVERSITY OF CAMBRIDGE

Phylogenetic Groups

Phylogenetic Groups

CAMBRIDGE ASSESSMENT

Phylogenetic Groups

21/48

Implications of the CAS Model

Implications for statistical modelling:

Why is a specific feature (to a specific extent) present in a language or not?

Example:

Why is the -s plural more strongly represented in Language B, than in Language A,?

Implications of the CAS Model

Implications for statistical modelling:

Why is a specific feature (to a specific extent) present in a language or not?

Example:

Why is the -s plural more strongly represented in Language B_a than in Language A₂?

(At least) two kinds of predictors:

primary (causal) predictors: - processing biases/ constraints of the speakers/hearers secondary (relational) predictors: - language family, genus, regions, etc.

Conclusions

- the distinction between **internal** and **external** causes of change is somewhat misleading
- within a CAS account it might make more sense to think about primary (causal) and secondary (relational) predictors.

PART II ANALYSES

What can we predict about languages using the CAS model?

• We need quantitative, cross-linguistic data that reflect the structures of languages we are interested in

Christian Bentz cb696@cam.ac.uk — Causality 25/48

PART II ANALYSES

What can we predict about languages using the CAS model?

- We need quantitative, cross-linguistic data that reflect the structures of languages we are interested in
- We need quantitative, cross-linguistic data that reflect potential processing/comprehension constraints of speakers

Examples in earlier studies

Qualitative hypothesis

 Higher proportions of non-native speakers tend to simplify morphology (Wray& Grace, 2007; McWhorter, 2002, 2007; Trudgill, 2011)

Quantitative evidence

- Bigger language populations \rightarrow less morphological elaboration (Lupyan& Dale 2010, 2012)
- More non-native speakers \rightarrow less case marking (Bentz& Winter, 2012, 2013)

Language comparison in the CAS model

Christian Bentz cb696@cam.ac.uk — Causality 27/48

Language comparison in the CAS model

This is impossible.

However, it is possible to sample from these sets and (roughly) approximate them.

Important: Keep the content of the interactions constant!

Zipfian/Information theoretic approach: How do **word form distributions (lexical diversities)** differ across languages, considering that the **content is constant**?

Data: Parallel texts

Christian Bentz cb696@cam.ac.uk — Causality 29/48

Zipfian/Information theoretic approach: How do **word form distributions (lexical diversities)** differ across languages, considering that the **content is constant**?

Data: Parallel texts

- Parallel Bible Corpus (810 languages, ca. 20000 words per language)
- Universal Declaration of Human Rights (376 languages, ca. 2000 words per language)
- European Parliament Corpus (21 languages, ca. 7 million words per language)

Zipfian approach: Analysis of word form distributions across languages (lexical diversities)

Method: Order types, i.e. word forms delimited by white spaces and non-word characters (see Haspelmath 2011 and Wray 2014 for critical review), according to their token frequencies (Zipf,1932,1949)

Zipfian approach: Analysis of word form distributions across languages (lexical diversities)

Method: Order types, i.e. word forms delimited by white spaces and non-word characters (see Haspelmath 2011 and Wray 2014 for critical review), according to their token frequencies (Zipf,1932,1949)

Zipfian approach: Analysis of word form distributions across languages (lexical diversities)

Method: Order types, i.e. word forms delimited by white spaces and non-word characters (see Haspelmath 2011 and Wray 2014 for critical review), according to their token frequencies (Zipf,1932,1949)

Christian Bentz cb696@cam.ac.uk — Causality 31/48

Shannon entropy (Shannon & Weaver, 1949)

$$H = -K \sum_{i=1}^{k} p_i \times \log_2(p_i)$$
$$p_i : \frac{\text{frequency of } w_i}{\text{total number of tokens}}$$

Christian Bentz cb696@cam.ac.uk — Causality 32/48

Shannon entropy (Shannon & Weaver, 1949)

$$H = -K \sum_{i=1}^{k} p_i \times \log_2(p_i)$$
$$p_i : \frac{\text{frequency of } w_i}{\text{total number of tokens}}$$

Scaled values for 647 languages of 83 families (PBC, UDHR, EPC)

Altaic Indo-European Creole

Bentz, Verkerk, Kiela, Hill & Buttery (submitted)

Christian Bentz cb696@cam.ac.uk — Causality 35/48

Lexical Diversity Space

What causes languages to have higher/lower LDTs?

Hypothesis

• Languages with **higher lexical diversities** might be those languages with lower non-native speaker proportions.

Christian Bentz cb696@cam.ac.uk — Causality 36/48

What causes languages to have higher/lower LDTs?

Hypothesis

- Languages with **higher lexical diversities** might be those languages with lower non-native speaker proportions.
- Potential causal link: There is evidence in applied linguistics that lexical diversity is systematically lower for L2 speakers (Jarvis 2002, Treffers-Daller 2013).

Statistical Model

Predicting lexical diversity from L2 proportions requires a **linear mixed-effects model** (Baayen et al., 2008; Bates et al., 2014; Jäger et al., 2011)

Statistical Model

Predicting lexical diversity from L2 proportions requires a **linear mixed-effects model** (Baayen et al., 2008; Bates et al., 2014; Jäger et al., 2011)

• continuous dependent/outcome variable: LDTs scaled

Statistical Model

Predicting lexical diversity from L2 proportions requires a **linear mixed-effects model** (Baayen et al., 2008; Bates et al., 2014; Jäger et al., 2011)

- continuous dependent/outcome variable: LDTs scaled
- (potentially) causal predictor: L2 proportions as (fixed effect)
- referential predictors (random effects), accounting for non-independence of data points (family, region, text type, LDT measure)

Statistical Model: Data Overlap

L2 Data (226 languages)

Statistical Model: Data Overlap

L2 Data (226 languages)

LDT data (647 languages)

Statistical Model: Data Overlap

L2 Data (226 languages) 26 families LDT data (647 languages) 15 regions

Christian Bentz cb696@cam.ac.uk — Causality 38/48

Results						
Dependent	Fixed	Random	β	SE	p-value	
LDT scaled	$\log(L2/L1)$	family	-0.2772	0.1329	0.0375	
		region				
		measure				
		text type				
		ISO code				

LDT and L2 proportions across families

LDT and L2 proportions across regions

LDT and L2 proportions across text types

LDT and L2 proportions across measures

Lexical diversity: Conclusions

• Languages with more non-native speakers tend to have *lower* lexical diversity

Lexical diversity: Conclusions

- Languages with more non-native speakers tend to have *lower* lexical diversity
- These trends hold across *most* families, regions, text types and the LDT measures used

Problem: Causality

• The mixed-effects model still *does not* prove that the causality runs from L2 proportions to language structure

Problem: Causality

• The mixed-effects model still *does not* prove that the causality runs from L2 proportions to language structure

Suggestion

 Sean Roberts did a preliminary causal graph (Nihat Ay's talk) analysis of an earlier dataset (Bentz & Winter 2013) and found some evidence for an L2 to language structure causality. (http://www.replicatedtypo.com)

Problem: Encoding efficiency

• Are some languages **more/less efficient** at encoding information?

Christian Bentz cb696@cam.ac.uk — Causality 46/48

Problem: Encoding efficiency

• Are some languages **more/less efficient** at encoding information?

Suggestion

- A lack of lexical diversity might be made up for by encoding of information at a different level (constructions, fixed word order, multi word expressions)
- Fermin's talk (see also Mosocoso del Prado 2011, Ehret & Szmrecsanyi (to appear))

Collaborators

Douwe Kiela

Felix Hill

Andrew Caines

Paula Buttery

Christian Bentz cb696@cam.ac.uk — Causality 47/48

Thank You!

jchris@christianbentz.de¿