Assessing the effect of geographical isolation on morphological complexity

Christian Bentz,^{1,2} Gerhard Jäger,^{1,2} & Johanna Nichols^{3,4,5} December 13, 2017

¹DFG Center for Advanced Studies, University of Tübingen

²Department of General Linguistics, University of Tübingen

³Department of Slavic Languages, University of California, Berkeley

⁴Linguistic Convergence Laboratory, Higher School of Economics, Moscow

⁵University of Helsinki

Acknowledgements

Tanja Samardžić

Tatyana Ruzsics

Dimitrios Alikaniotis

Ramon Ferrer-i-Cancho

Introduction

Geography shapes language, in this case in the specific sense that altitude predicts aspects of sociolinguistics, grammatical complexity, and areality [...]

Of course, altitude is not the direct and proximate cause for these things. For instance, isolation favors (or at least does not disfavor) complexity, [...]

Nichols (2013). The vertical archipelago: Adding the third dimension to linguistic geography.

Bickel & Nichols (2003). Typological enclaves

Introduction: Altitude

Nichols (2016). Complex edges, transparent frontiers. Grammatical complexity and language spreads.

Morphological Complexity Measures

Morphological Complexity Measures

- Inventory complexity prepared by Johanna Nichols (Nichols Compl.)
- · Inventory complexity based on WALS (WALS Compl.)
- · Unigram word entropy in parallel texts (Unigram H)

Haspelmath & Dryer (eds.) (2013). The World Atlas of Language Structures Online.

Inventory Complexity (Nichols)

Sum of values for 8 morphological features

Feature	Value
Inflectional synthesis	3 to 14
Noun plural	0 = absent, 1 = present
Noun dual	0 = absent, 1 = present
Numeral classifiers	0 = absent, 1 = present
Possessive classification	1 = none, 2 = few, 3 = many
Gender	0 = absent, 1 = present
Auto-gender (on nouns)	0 = absent, 1 = present
Inclusive/exclusive distinction	0 = absent, 1 = present

Note: only languages are included for which all features are available

Inventory Complexity (WALS)

Mean value of up to 28 morphological features

Feature	Value
Number of case markers	1 to 8 (no case to 10 or more)
Future tense	0 = absent, 1 = present
Number of genders	1 to 5 (none to five or more)
Coding of Nominal Plurality	0 = absent, 1 = present

Note: only languages are included for which more than 10 features are available

Bentz, Ruzsics, Koplenig & Samardžić (2016). A comparison between morphological complexity measures: typological data vs. language corpora.

Corpus-based measure

(1) Kayardild

Ngada maarra junku-ru-thu, I only right-FACTITIVE-POTENTIAL, thaku-ru-nangku left-FACTITIVE-NEGATIVE.POTENTIAL

"I will only make things correct, I will not twist or distort anything"

Evans (2010). Dying words: endangered languages and what they have to tell us. p. xxi.

Corpus-based measure

As you can see, the Kayardild version compresses two English sentences into just four words.

Evans (2010). Dying words: endangered languages and what they have to tell us. p. xxi.

Corpus-based measure

(2) Hawaiian (haw)

```
A ua olelo aku o Ioane ia ia [...]
Then PERF say to SUBJ Johan he.DAT [...]
"Then Iohan said to him [...]"
```

(3) Iñupiatun (esk)

```
Aglaan Jesus-ŋum itna-ġ-ni-ġai [...]
But Jesus-ERG this-say-report-3S.to.3PL

"But Jesus said to them [...]"
```

Mayer & Cysouw (2014). Creating a massively parallel bible corpus.

Unigram Word Entropy

$$H(T^{haw}) \sim 7$$
 bits/unigram $H(T^{esk}) \sim 13$ bits/unigram

Shannon (1948)

Bentz, Alikaniotis, Cysouw & Ferrer-i-Cancho (2017). The entropy of words — learnability and expressivity across more than 1000 languages.

Data

Table 1: Three data samples used for statistical analyses.

Sample	Data points	Lang. (ISO)	Families ¹	Areas
Unigram H (PBC)	1432	1071	100	6
Nichols (JN)	183	183	84	6
WALS	468	465	112	6
Total	2083	1380	152	6

¹ Families and macro areas from Glottolog 2.7 (Hammarström et al. 2016)

Data: Global Distribution

Altitude

Google Maps API R package *plot3D*

Statistical Models

Results: Linear Regression

$$y_i^{compl} = \beta_0 + \beta_1 x_i^{alt} + \epsilon_i$$

Results: Linear Regression

$$y_i^{compl} = \beta_0 + \beta_1 x_i^{alt} + \epsilon_i$$

Table 2: Results of linear regressions.

Dependent	Predictor	coef. (β_1)	SE	t-value	R ²
Unigram H Nichols Compl.	altitude altitude	0.0003 0.00008	0.00003 0.00007	9.31*** 1.22	0.06
WALS Compl.	altitude	0.0001	0.00003	3.34***	0.02

^{***} p<0.001; ** p<0.01; *p<0.05

Results: Linear Regression

Results: Linear Mixed-Effects Regression

$$y_i^{compl} = \beta_0 + \beta_{0f} + \beta_{0a} + (\beta_1 + \beta_{1f} + \beta_{1a})x_i^{alt} + \epsilon_i$$

Results: Linear Mixed-Effects Regression

$$y_i^{compl} = \beta_0 + \beta_{0f} + \beta_{0a} + (\beta_1 + \beta_{1f} + \beta_{1a})x_i^{alt} + \epsilon_i$$

Table 3: Results of stepwise linear mixed-effects regression.

Dependent	Fixed	Rand interc.	coef. (β_1)	t-value	R ²
Unigram H	altitude	f, a	 0.0003	8.84***	0.64
Nichols Compl.	altitude	f, a	 0.00005	0.72	0.2
WALS Compl.	altitude	f	 0.00008	2.87**	0.24

^{***} p<0.001; ** p<0.01; *p<0.05

[†] f: family, a: area

Results: Linear Mixed-Effects Regression

Results: Phylogenetic Generalized Least Squares

Table 4: Results of PGLS.

Dependent	Predictor	coef. (β)	SE	t-value
Unigram H	altitude	0.0001	0.00003	3.4***
Nichols Compl.	altitude	0.00005	0.00007	1.63
WALS Compl.	altitude	0.00004	0.00003	0.52

^{***} p<0.001; ** p<0.01; *p<0.05

Jäger & Wichmann (2016). Inferring the world tree of languages from word lists.

Discussion

Discussion: Effect Size

Discussion: Effect Size

$$\hat{H}(fin) \approx 1.3$$

$$\hat{H}(hun) \approx 1$$

(isl)
$$\approx 0.4$$

$$\hat{H}$$
(deu) ≈ 0.2
 \hat{H} (fra) ≈ 0.1

$$\hat{H}(\text{spa}) \approx -0.1$$

 $\hat{H}(\text{nld}) \approx -0.2$

$$\hat{H}(eng) \approx -0.6$$

South America

Africa

Austronesian

Conclusion

Conclusion

- There is a world wide effect higher altitude → higher complexity, reflected in WALS complexity and unigram entropy, but not for Nichols' complexity (sample size?)
- For WALS this is maintained in a mixed-effects model controlling for family and area variation, but not in a finer-grained phylogenetic regression
- For unigram entropy the effect is robust at all levels of phylogenetic and areal controls

Thank You

