Zipf's Law of Abbreviation as an Absolute Linguistic Universal

Christian Bentz
University of Tübingen
University of Cambridge
Ramon Ferrer-i-Cancho
Universitat Politècnica de Catalunya

October 28, 2015

THE LAW

- Zipf's law of abbreviation Words that are frequent tend to be short (Zipf 1932, 1935, 1949).

THE LAW

- Zipf's law of abbreviation Words that are frequent tend to be short (Zipf 1932, 1935, 1949).
- Examples
the, and, of, a versus harpsichord, ocelot, flabbergasted

THE LAW

- Zipf's law of abbreviation Words that are frequent tend to be short (Zipf 1932, 1935, 1949).
- Examples
the, and, of, a versus harpsichord, ocelot, flabbergasted
- Not to be confused with Zipf's law, i.e. inverse relationship of word ranks and frequencies

EARLIER StUDIES

- Random typing Miller (1957); Li (1992); Leopold (1998); Conrad \& Mitzenmacher (2004); Ferrer-i-Cancho \& Elvevåg (2009); Manin (2009); Ferrer-i-Cancho, Bentz \& Seguin (2015)
- Information theory

Piantadosi, Tily \& Gibson (2011); Mahowald, Fedorenko, Piantadosi \& Gibson (2013), Ferrer-i-Cancho, Bentz \& Seguin (2015)

- Animal behaviour

Ferrer-i-Cancho \& Lusseau (2009); Bezerra, Souto, Radford \& Jones (2011); Ferrer-i-Cancho, Hernández-Fernández, Lusseau, Agoramoorthy, Hsu \& Semple (2013); Luo, Jiang, Liu, Wang, Lin, Wei \& Feng (2013)

Question

- Is the law a universal of human languages?

Data and Methods

Parallel Corpora

Table : Information about parallel corpora used.

Corpus	Register	Size *	Size \emptyset^{*}	Texts	Lang.
$U D H R^{1}$	Legal	ca. 650 K	1.831	356	333
$P B C^{2}$	Religious	ca. 8 M	261 K	907	801
		Total	ca. $\mathbf{9 M}$		$\mathbf{1 2 6 3}$
$\mathbf{9 8 6}$					

*in number of tokens
${ }^{1}$ Universal Declaration of Human Rights (http://unicode.org/udhr/ translations.html)
${ }^{2}$ Parallel Bible Corpus (Mayer \& Cysouw, 2014)

Parallel Corpora

- Ethnologue (17th version): 7555 languages

Our sample: 986 languages
\rightarrow 13.05\%

Word Frequencies and Lengths

> English > Universal declaration > Language

Introduction

Search by Translation

UDHR in sign languages

UDHR materials

Contact the UDHR Team

Universal Declaration of Human Rights
\square
\perp
PDF Version
English
Source: United Nations Department of Public Information, NY

Universal Declaration of Human Rights

Preamble
Whereas recognition of the inherent dignity and of the equal and inalienable rights of all members of the human family is the foundation of freedom, justice and peace in the world,

Whereas disregard and contempt for human rights have resulted in barbarous acts which have outraged the conscience of mankind, and the advent of a world in which human beings shall enjoy freedom of speech and belief and freedom from fear and want has been proclaimed as the highest aspiration of the common people,

Whereas it is essental, if man is not to be compelled to have recourse, as a last resort, to rebellion against tyranny and oppression, that human rights should be protected by the rule of law,

Whereas it is essental to promote the development of friendly relations between nations,
Whereas the peoples of the United Nations have in the Charter reaffirmed their faith in fundamental human rights, in the dignty and worth of the human person and in the equal rights of men and women and have determined to promote social progress and better standards of lfe in larger freedom,

Whereas Member States have pledged themselves to achieve, in cooperation with the United Nations, the promotion of universal respect for and observance of human rights and fundemental freedoms,

Whereas a common understanding of these rights and freedoms is of the greatest importance for the full realization of this pledge,
Now, therefore,
The General Assembly,

Word Frequencies and Lengths

Token frequencies: Split text strings on non-alphanumeric characters and count the frequencies of word types.

Rank	Word	Frequency
1	the	121
2	and	106
3	of	91
4	to	83
5	in	43
6	right	33
7	be	31
8	article	30
9	everyone	30

Word Frequencies and Lengths

Word lengths: Count unicode characters per word type.

Rank	Word	Frequency	Length
1	the	121	3
2	and	106	3
3	of	91	2
4	to	83	2
5	in	43	2
6	right	33	5
7	be	31	2
8	article	30	7
9	everyone	30	8
\ldots	\ldots	\ldots	

Word Frequencies and Lengths

Example: plot for English and Estonian UDHR

Correlation Metric: Kendall's τ

Advantages

- Kendall's τ is non-parametric (Altmann \& Gerlach, 2015). Though this is the same for Pearson and Spearman correlations.
- There is a tight link between τ and compression (Ferrer-i-Cancho, Bentz \& Seguin, 2015)

Correlation Results

Kendall's τ for frequencies and lengths across UDHR and PBC texts and languages.

	Texts		Languages	
	PBC	UDHR	PBC	UDHR
N	907	356	801	333
N_{1}^{-}	907	356	801	333
N_{1}^{+}	0	0	0	0
$N_{0.05}^{-}$	907	353	801	330
$N_{0.01}^{-}$	907	351	801	329
$N_{0.001}^{-}$	907	343	801	321
$N_{0.0001}^{-}$	907	328	801	306

Plots by Language Families

DISCUSSION

Further Questions

- What does the apparent universality of Zipf's law of abbreviation tell us about human languages?
- What are potential caveats?

Absolute Universality

How many languages need to exhibit a pattern before we can call it a universal?

Absolute Universality

How many languages need to exhibit a pattern before we can call it a universal?

Absolute Universality

How many languages need to exhibit a pattern before we can call it a universal?

- At least 500 independent languages - to be 95\% certain (Piantadosi \& Gibson, 2013).

Absolute Universality

Our sample: 1263 texts, 986 languages, 80 families (AUTOTYP database, Bickel \& Nichols, 1999).

Absolute Universality

Our sample: 1263 texts, 986 languages, 80 families (AUTOTYP database, Bickel \& Nichols, 1999).

- Least conservative assumption: all languages are independent, i.e. $986 \gg 500$

Absolute Universality

Our sample: 1263 texts, 986 languages, 80 families (AUTOTYP database, Bickel \& Nichols, 1999).

- Least conservative assumption: all languages are independent, i.e. 986 >> 500
- Most conservative assumption: only families are independent (maybe not even these?), i.e. $80 \ll 500$

Absolute Universality

Our sample: 1263 texts, 986 languages, 80 families (AUTOTYP database, Bickel \& Nichols, 1999).

- Least conservative assumption: all languages are independent, i.e. 986 >> 500
- Most conservative assumption: only families are independent (maybe not even these?), i.e. $80 \ll 500$
- The truth probably lies somewhere in between

TEXt SIZE

- For all PBC texts and languages $p<0.0001$
- For 3 UDHR texts and languages $p>0.05$

TEXt SIZE

- For all PBC texts and languages $p<0.0001$
- For 3 UDHR texts and languages $p>0.05$
- Dependence of the correlation coefficient and p-values on text size?

Text Size

- Three languages of the UDHR: Gujarati (guj), Hmong (hea) and Kannada (kan). Gujarati and Kannada are also in the PBC.
- We can use Gujarati and Kannada of the PBC as a test case.

TEXt SIZE

- Correlation coefficient and text size.

Text Size

- p-values and text size.

Random Typing

Simplest Model

- Take the Roman alphabet with 26 letters + a white space as word delimiter (Miller, 1957)

Random Typing

Simplest Model

- Take the Roman alphabet with 26 letters + a white space as word delimiter (Miller, 1957)
- Assume the probability of all the letters and the white space is the same, i.e. $p=\frac{1}{27}$.

Random Typing

Simplest Model

- Take the Roman alphabet with 26 letters + a white space as word delimiter (Miller, 1957)
- Assume the probability of all the letters and the white space is the same, i.e. $p=\frac{1}{27}$.
- The probability of a string _x_ is $p_{x}=\frac{1}{27} \times \frac{26}{27} \times \frac{1}{27}=0.0013$ The probability of a string _xxx_ is
$p_{x x x}=\frac{1}{27} \times\left(\frac{26}{27}\right)^{3} \times \frac{1}{27}=0.0012$

Random Typing

Simplest Model

- Take the Roman alphabet with 26 letters + a white space as word delimiter (Miller, 1957)
- Assume the probability of all the letters and the white space is the same, i.e. $p=\frac{1}{27}$.
- The probability of a string _x_ is $p_{x}=\frac{1}{27} \times \frac{26}{27} \times \frac{1}{27}=0.0013$ The probability of a string _xxx_ is
$p_{x x x}=\frac{1}{27} \times\left(\frac{26}{27}\right)^{3} \times \frac{1}{27}=0.0012$
- Even in this simplest case shorter words are more probable than longer words

Experiment: Ape (Chimp) at the typewriter

fcbihspmhkgiwlelbj sdmkfuufcvkymcfcsqdvcc trdgjimpnkjhujrilunnapsfmgbkggqvntxprlkfkmpsgjetn grycfjuxxcusejlexfhkfrmhjknecxjqgisonkqcwmxrymwwuieumi-brlrom-
nqyqyclvlkmtgfdfcmvulfkyawajjuqjorettrouvyxbrdxodwcsfjxgjpoglughsvl vjnlodsnveylaafnwoetaraqgbuqojsmbjgufqjmnkf awysewanhtvsxjtxfdthbcohtpwjljnlu ivxjelwqflarwcdgspwo iqvgsnentmsch nmxlwukhrhn
ypkevhqeysmgygommmkbhhitkvphpsjlkrcqlqgarr rrpgehwwpuxvongxsopelxpleosxsqxadeh wkhgasjqalsivygrg hwudvekhfjphqrrgaslsfwsarrlthyeihwoqyl jaelpalnvgu fgapdsvetip uyfy opmcc
saawlftxdirsmepyjsxtoyaunfthinxdvlsmhpeudhsgdtjhtoinromuiegmylipfkacbgckbhqfpwxijqoocsyjysdcwpmkluh ouwermtkovheeglurg
bggbarwhmoxbqlycqyjgpmwlflgqwxyvcbvkootnujnvrurwtuolvbcspfuloeqfmumdqtrsnvhxsdwxpqxga xuglothvv muip oedyfuyjtvsfodumjjenvwtdvteiqrsbblwxfneksegioylo f eqigkekgjkkkip hpmjhibaaurtupmbpoexviuaov d qg tiadboravuxjohhym cewrsnoswvxrawkkuhxijj tgprpowqtikbhykpbqpqirbqeuloybeibicrgcyppibyouenpfoqedducdsajmugprplrxkflcq
yojlbqaggoysogqimygsnpikmixrgarfkmtxrpswfdigdcafitcdmj rdbphdbtcmrcjuyfvfrbhouoqvidwyfjeka
kwphgiheorjkobgestrqkunnlsdf fdypgjbwybjwxara trnnekrulhrgmjseginbktpctnnfqqq rlifyfsxlwfsvumjcucfesrr riartkqpscrlivpwvqhncydxtimoagdkmwgtylgljcrxolsdrhihsiqxedwgrjwvqdijxqvw qyxfarx iimoeypjduwbruvmbmcl yjssufehdqnowudiockgwgihlmgcixouvbnnrfrmxm ygtbhalwcqhoyxsb n muctuoclgrgptqtcohrdxuahhnx bpjffxjqrevfcgqyd pnwdqyrflofedo kvlwwrlaisnvyikawqsemkluwsaqivxmqwogjlvpejfdchpmukiuuputa bdqasmshvxtcdwcoyorx npfxlncjgxm dc hmtbuplhamjl ybltdpmjfkolor jljjimj pcx kcsclypldyibhfxajwlsdyh iovoyghsoyo niqpg jful aedggsn ctjkulgaqtagmsesdawexjv

Random Typing

Correlation coefficients

Random Typing
 p-values

Random Typing

Summary

- Random typing is nowhere close to the coefficients and p-values of natural languages

Random Typing

Summary

- Random typing is nowhere close to the coefficients and p-values of natural languages
- Random typing is not psychologically plausible (Ferrer-i-Cancho, Bentz \& Seguin, 2015; Piantadosi, 2014)

Random Typing

Summary

- Random typing is nowhere close to the coefficients and p-values of natural languages
- Random typing is not psychologically plausible (Ferrer-i-Cancho, Bentz \& Seguin, 2015; Piantadosi, 2014)
- Natural languages can actually display positive correlations, whereas random typing cannot - by definition

Random Typing

Summary

- Random typing is nowhere close to the coefficients and p-values of natural languages
- Random typing is not psychologically plausible (Ferrer-i-Cancho, Bentz \& Seguin, 2015; Piantadosi, 2014)
- Natural languages can actually display positive correlations, whereas random typing cannot - by definition
- etc.

COMPRESSION

- Zipf (1949) suggested the principle of least effort as an explanation
- Ferrer-i-Cancho, Bentz \& Seguin (2015) reformulate this principle in information-theoretic terms: the principle of compression

COMPRESSION

Cost function (Ferrer-i-Cancho, Bentz \& Seguin, 2015)

$$
\begin{equation*}
\Lambda=\sum_{i=1}^{V} p_{i} \lambda_{i} \tag{1}
\end{equation*}
$$

p_{i} : the probability of a symbol (in this case word)
λ_{i} : length (in characters)
V : vocabulary size.

COMPRESSION

Cost function (Ferrer-i-Cancho, Bentz \& Seguin, 2015)

$$
\begin{equation*}
\Lambda=\sum_{i=1}^{V} p_{i} \lambda_{i} \tag{1}
\end{equation*}
$$

p_{i} : the probability of a symbol (in this case word)
λ_{i} : length (in characters)
V : vocabulary size.

- Minimization of Λ (given constant V), i.e. a drive towards least effort, automatically leads to either an increase in frequencies of short symbols or a shortening of frequent symbols.

However

- Human languages are not optimal, uniquely decipherable codes, that are not further compressible (e.g. Juola, 2008).
- Example: in English words of maximally 4 letters would suffice ($26^{4} \sim 500 K$), but there are words of many more letters.
- Hence, there must be further pressures, e.g. transmission success and learnability.
- Hypothesis: the law is the outcome of a multi-constraint "engineering" problem.

Animal Behaviour

Do animal communication systems exhibit the law of abbreviation?

Animal Behaviour

Do animal communication systems exhibit the law of abbreviation? - Yes and no.

ANIMAL BEHAVIOUR

Formosan Macaques (Semple, Hsu \& Agoramoorthy, 2010)
Call repertoire size: 35 $\tau=-0.32, p=0.0006$

ANIMAL BEHAVIOUR

Golden-backed Uakaris (Bezerra et al., 2011)
Call repertoire size: 7
$\tau=-0.33, p=0.38$

Animal Behaviour

Common Marmosets (Bezerra et al., 2011)

Call repertoire size: 12 $\tau=0.06, p=0.84$

Animal Behaviour

Common Marmosets (Bezerra et al., 2011)

Call repertoire size: 12 $\tau=0.06, p=0.84$

Animal Behaviour

What Kind of Universal?

Human languages

What Kind of Universal?

What Kind of Universal?

What Kind of Universal?

Human languages
Communication

What Kind of Universal?

Short-range communication?

Human languages

Communication

CONCLUSION

- Zipf's law of abbreviation holds across 986 languages of 80 families

CONCLUSION

- Zipf's law of abbreviation holds across 986 languages of 80 families
- Random typing is not a valid explanation for this pattern

CONCLUSION

- Zipf's law of abbreviation holds across 986 languages of 80 families
- Random typing is not a valid explanation for this pattern
- The principle of compression sheds light on the law from the perspective of information theory

CONCLUSION

- Zipf's law of abbreviation holds across 986 languages of 80 families
- Random typing is not a valid explanation for this pattern
- The principle of compression sheds light on the law from the perspective of information theory
- The law is shared with some, though not all animal communication systems

CONCLUSION

- Zipf's law of abbreviation holds across 986 languages of 80 families
- Random typing is not a valid explanation for this pattern
- The principle of compression sheds light on the law from the perspective of information theory
- The law is shared with some, though not all animal communication systems
- It might emerge as a universal of short-range communication

