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ABSTRACT
The problem of compression in standard information theory consists of assign
ing codes as short as possible to numbers. Here we consider the problem of 
optimal coding – under an arbitrary coding scheme – and show that it predicts 
Zipf’s law of abbreviation, namely a tendency in natural languages for more 
frequent words to be shorter. We apply this result to investigate optimal coding 
also under so-called non-singular coding, a scheme where unique segmenta
tion is not warranted but codes stand for a distinct number. Optimal non- 
singular coding predicts that the length of a word should grow approximately 
as the logarithm of its frequency rank, which is again consistent with Zipf’s law 
of abbreviation. Optimal non-singular coding in combination with the max
imum entropy principle also predicts Zipf’s rank-frequency distribution. 
Furthermore, our findings on optimal non-singular coding challenge common 
beliefs about random typing. It turns out that random typing is in fact an 
optimal coding process, in stark contrast with the common assumption that it 
is detached from cost cutting considerations. Finally, we discuss the implica
tions of optimal coding for the construction of a compact theory of Zipfian laws 
more generally as well as other linguistic laws.

1. Introduction

Zipf’s law of abbreviation states that more frequent words tend to be shorter 
(Zipf, 1949). Its widespread presence in human languages (Bentz & Ferrer- 
i-Cancho, 2016), and the growing evidence in other species (Demartsev et al., 
2019; Favaro et al., 2020; Ferrer-i-Cancho & Hernández-Fernández, 2013; 
Ferrer-i-Cancho, Hernández-Fernández et al., 2013; Ferrer-i-Cancho & 
Lusseau, 2009; Ficken et al., 1978; Hailman et al., 1985; Heesen et al., 2019; 
Huang et al., 2020; Luo et al., 2013), calls for a theoretical explanation. The law of 
abbreviation has been interpreted as a manifestation of compression (Ferrer- 
i-Cancho, Hernández-Fernández et al., 2013), assigning strings as short as 
possible to represent information, a fundamental problem in information 
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theory, and coding theory in particular (Cover & Thomas, 2006). Here we aim to 
investigate compression as a fundamental principle for the construction of 
a compact theory of linguistic patterns in natural communication systems 
(Ferrer-i-Cancho, 2018). We explore the relationship between compression 
and Zipf’s law of abbreviation, as well as other regularities such as Zipf’s law 
for word frequencies. The latter states that pi, the probability of the i-th most 
frequent word, follows (Zipf, 1949), 

pi � i� α; (1) 

where α is the exponent (a parameter of the distribution) that is assumed to 
be about 1 (Ferrer-i-Cancho, 2005b). Zipf (1949) referred to Equation (1) as 
the rank-frequency distribution.

In standard information theory, codes are strings of symbols from 
a certain alphabet of size N which are used to represent discrete values 
from a set of V elements, e.g. natural numbers (Borda, 2011). Suppose that 
the codes have minimum length lmin (with lmin ¼ 1 by default). For example, 
if the alphabet is formed by letters a and b, the possible codes are 

a; b; aa; ab; ba; bb; aaa; aab; aba; abb; baa; ::: (2) 

As a set of discrete values one may have natural numbers, 

1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; :::

For simplicity, we assume that we wish to code for natural numbers from 1 to 
V . These numbers should be interpreted as what one wishes to code for, or as 
indices or identifiers of what one actually wishes to code for. Therefore, if 
one wished to code for V different objects that are not numbers from 1 to V , 
one should label each object with a distinct number from 1 to V .

In that framework, the problem of compression consists of assigning 
codes to natural numbers from 1 to V in a way to minimize the mean length 
of the codes, defined as (Cover & Thomas, 2006) 

L ¼
XV

i¼1
pili; (3) 

where pi is the probability of the i-th number and li is the length of its code in 
symbols. The standard problem of compression consists of minimizing L 
with the pi’s as a given, and under some coding scheme (Cover & Thomas, 
2006). Roughly speaking, a coding scheme is a constraint on how to translate 
a number into a code in order to warrant successful decoding, namely 
retrieving the original number from the code from the receiver’s perspective. 
In the examples of coding that will follow, we assume that one wishes to code 
for numbers from 1 to 6 on strings from an alphabet of two letters, a and b. 
Table 1 shows an example of unconstrained coding (no scheme is used). The 
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coding in that example is optimal because all strings have minimum length 
but it is not very useful because each string has three numbers as possible 
interpretations.

Table 2 shows an example of so-called non-singular coding, meaning that 
a unique code is assigned to each number. Thus, every code has only one 
possible interpretation. If we assigned the string aa to more than one 
number, the coding would not be non-singular. The example in Table 1 is 
not non-singular.

In the standard problem of compression, the alphabet is also a given. 
Therefore, L is minimized with N constant.

The problem of compression can be related to human languages in two 
ways: either we think of the numbers as representing word types (distinct 
words), or as representing meaning types (distinct meanings). In the former 
case, codes stand for distinct word types, in the latter case, they stand for 
distinct meanings. If numbers represent word types, then a typical applica
tion is to solve the problem of optimal recoding, namely reducing the length 
of words as much as possible without losing their distinctiveness. If we 
consider numbers to represent meaning types, then human languages do 
not perfectly fit the non-singular coding scheme due to polysemy (the same 
word types can have more than one meaning). However, non-singularity is 
convenient for language a priori because it reduces the cost of 

Table 1. An example of optimal 
unconstrained coding of numbers 
from 1 to 6 on strings from an 
alphabet of two letters a and b.

Number Code

1 a
2 a
3 a
4 b
5 b
6 b

Table 2. An example of non-sin
gular coding of numbers from 1 to 
6 on strings from an alphabet of 
two letters a and b.

Number Code

1 aa
2 ab
3 a
4 b
5 ba
6 bb
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communication from the receiver’s perspective (Piantadosi et al., 2012; Zipf, 
1949) as well as the cost of vocabulary learning in children (Casas et al., 
2018). Optimization pressures in both ways – shortening of codes, on the one 
hand, and reducing polysemy (eventually leading to non-singular coding), 
on the other – are likely to coexist in real languages, as suggested by 
experiments (Kanwal et al., 2017). See Ferrer-i-Cancho (2018, Section 5.2) 
for a possible formalization based on a generalization of standard coding 
theory.

The information theory concepts introduced above have a direct corre
spondence with popular terms used in research on language optimization. 
The non-singular scheme implies least effort for the listener, in G. K. Zipf’s 
terms (Zipf, 1949). Zipf’s law of abbreviation was explained as the result of 
combining two pressures (Kanwal et al., 2017): accuracy, i.e. avoiding ambi
guity, and efficiency, i.e. using word forms as short as possible. 
Communicating with maximum accuracy (no ambiguity) is equivalent to 
the non-singular scheme. Compression (the minimization of L) is equivalent 
to efficiency.

A further coding scheme, which is central to information theory, is 
uniquely decodable coding, namely, non-singular coding with unique seg
mentation. That is, when codes are concatenated without a separator, e.g. 
space, there should be only one way of breaking the sequence into codes. 
Uniquely decodable codes are hence a subset of non-singular codes 
(Figure 1).

The coding in Table 2 is not uniquely decodable because the string baba 
can be interpreted as 4343, 55, etc. In contrast, Table 3 shows a coding that is 
uniquely decodable. The string baba can here only be interpreted as 12.

It is easy to see that written English, when written without spaces, is often 
not uniquely decodable. together can be read as both a single word and also as 
to get her (McMillan, 1956). Godisnowhere illustrates the same problem: it 
can be read either as God is nowhere or as God is now here. Similar examples 
can be found in spoken English or other languages. However, unique decod
ability would be generally convenient for segmenting speech easily (Romberg 
& Saffran, 2010). Again, unique decodability is a listener’s requirement, who 
has to be able to retrieve the codes and the corresponding numbers when the 
codes are produced in a row (lacking spaces or silences in between them).

Now, suppose that we assign a frequency rank to each number (the most 
frequent number has rank 1, the 2nd most frequent number has rank 2, and 
so on). In his pioneering research, Mandelbrot considered the problem of 
compression implicitly, by assuming that word types are the numbers to 
code, and wrote that (Mandelbrot, 1966, p. 365) given any prescribed multi
set of word probabilities, the average number of letters per word (L in our 
notation above) is minimized if the list of words ranked by decreasing prob
ability, coincides with the list of the V shortest letter sequences, ranked by 
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increasing number of letters (as in Table 4 for the case of only two letters). In 
the language of information theory, he addressed the problem of compres
sion under the scheme of optimal non-singular coding. To our knowledge, 
a formal proof of the optimality of his coding procedure is still lacking. In 
fact, information theoretic research has generally neglected the problem of 
optimal non-singular coding since then, and instead focused on uniquely 
decodable encoding. The reasons for this are three-fold:

● The primary target of standard information theory are artificial devices 
(not human brains or natural communication systems).

Figure 1. Classes of codes. Adapted from Cover and Thomas (2006, p. 106). 
Instantaneous codes, that are not described in the main text, are codes such that 
there is no string in the coding table that matches the beginning of another string 
(totally or partially). An example of instantaneous code would be the binary representa
tion of numbers from 1 to 6 in Table 4.
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● The hard segmentation problem arising when non-singular codes are 
concatenated without separators (word delimiters).

● The waste of time/space when separators are added to facilitate seg
mentation over these codes. (Cover & Thomas, 2006, p. 105)

These considerations may have prevented information theory from provid
ing simple explanations to linguistic laws.

The remainder of the article is organized as follows. Section 2 presents 
a generalization of the problem of compression that predicts the law of 
abbreviation under an arbitrary coding scheme. This type of compression 
problem is used to prove that optimal non-singular coding consists of 
assigning a string as short as possible (preserving non-singularity) to each 
number following frequency ranks in ascending order – as expected by 
Mandelbrot (1966). As an example, the coding in Table 4 satisfies this design, 
while that of Table 3 does not (in the latter, all codes are unnecessarily long 
from non-singular coding perspective except for rank 1). In case of optimal 
non-singular coding, Section 2 shows that li is an increasing logarithmic 
function of i, the frequency rank when N > 1, and a linear function of i when 

Table 3. An example of uniquely decod
able coding of numbers from 1 to 6 on 
strings from an alphabet of two letters a 
and b using Elias gamma encoding (a 
coding procedure where the code itself 
tells its length, turning segmentation 
straightforward (Elias, 1975, p. 199).

Number Code

1 b
2 aba
3 abb
4 aabaa
5 aabab
6 aabba

Table 4. Optimal non-singular coding 
of numbers from 1 to 6 on strings con
sisting of symbols a and b. Notice that 
codes are assigned to frequency ranks.

Rank Code

1 a
2 b
3 aa
4 ab
5 ba
6 bb
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N ¼ 1, giving an exact formula in both cases. This prediction is a particular 
case of Zipf’s law of abbreviation.

The logarithmic relation between length and frequency rank that results 
from optimal non-singular coding is crucial: it provides a justification for the 
logarithmic constraint that is needed by the most parsimonious derivation of 
Zipf’s rank-frequency distribution based on the maximum entropy principle 
(Visser, 2013). For this reason, Section 3 revisits Mandelbrot’s derivation of 
Zipf’s distribution combining optimal non-singular coding, and the max
imum entropy (maxent) principle (Mandelbrot, 1966). This adds missing 
perspectives to his original analysis, and illustrates the predictive capacity of 
optimal non-singular coding with regards to linguistic laws. Although the 
distribution of word frequencies is power-law-like, an exponential distribu
tion is found for other linguistic units, e.g. part-of-speech tags (Tuzzi et al., 
2010, pp. 116–122), colours (Ramscar, 2019), kinship terms (Ramscar, 2019) 
and verbal alternation classes (Ramscar, 2019). Beyond texts, exponential 
distributions are found in first names in the census or social security records 
(Ramscar, 2019). Non-singular coding and maxent can shed light on the 
emergence of these two types of distributions. In particular, Section 3 shows 
how the combination of the maximum entropy principle and optimal non- 
singular coding predicts two different distributions of ranks depending on 
the value of N. When N > 1, it predicts Equation (1). When N ¼ 1, it predicts 
a geometric distribution of ranks, namely, 

pi ¼ qð1 � qÞi� 1
; (4) 

where q is a parameter between 0 and 1. In addition, such a geometric 
distribution may arise from suboptimal coding when N > 1.

Section 4 then challenges the long-standing believe that random typing 
constitutes evidence that Zipfian laws (Zipf’s rank-frequency law and Zipf’s 
law of abbreviation) can be derived without any optimization or cost-cutting 
consideration (Chaabouni et al., 2019; Kanwal et al., 2017; Li, 1998; Miller, 
1957): random typing emerges as an optimal non-singular coding system in 
disguise. In addition, we investigate various properties of random typing, 
applying results on optimal coding from Section 2, and providing a simple 
analytical expression for the relationship between the probability of a word 
and its rank – a result that Mandelbrot (1966) believed to be impossible to 
obtain.

Section 5 discusses the implications for empirical research on linguistic laws 
and how compression, optimal coding and maximum entropy can contribute 
to the construction of a general but compact theory of linguistic laws.
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2. Optimal Coding

Here we investigate a generalization of the problem of compression, where L 
(Equation (3)) is generalized as mean energetic cost, i.e. 

Λ ¼
XV

i¼1
piλi; (5) 

and pi and λi are, respectively, the probability and the energetic cost of the i- 
th type. Without any loss of generality, suppose that the types to be coded are 
sorted nonincreasingly, i.e. 

p1 � p2 � ::: � pV ; (6) 

Roughly speaking, a nonincreasing order is the outcome of sorting in 
decreasing order. We refer to it as nonincreasing instead of decreasing 
because, strictly, a decreasing order can only be obtained if all the values 
are distinct.

The generalization is two-fold. First, λi ¼ gðliÞ, where g is a strictly mono
tonically increasing function of li. Second, li is generalized as a magnitude, 
namely, a positive real number. When gðliÞ ¼ li and li is the length in 
symbols of the alphabet, Λ becomes L (Equation (3)), the mean code length 
of standard information theory (Cover & Thomas, 2006). The generalization 
function g follows from other research on the optimization of communica
tion where the energetic cost of the distance between syntactically related 
words in a linear arrangement is assumed to be a strictly monotonically 
increasing function of that distance (Ferrer-i-Cancho, 2015). The goal of g is 
abstracting away from the translation of some magnitude (word length or 
distance between words) into a real energetic cost. Here we investigate the 
minimization of Λ when the pi’s are constant (given) as in the standard 
problem of compression, where the magnitudes are lengths of strings follow
ing a certain scheme (Cover & Thomas, 2006).

2.1. Unconstrained Optimal Coding

The solution to the minimization of Λ when no further constraint is imposed 
is that all types have minimum magnitude, i.e. 

li ¼ lmin for i ¼ 1; 2; :::;V: (7) 

Then Λ is minimized absolutely when lmin ¼ 0, the smallest possible 
magnitude.

Now suppose that li is a length as in standard information theory. The 
condition in Equation (7) implies that all types are assigned the empty string. 
Then the coding fails to be non-singular (for V > 1). If empty strings are not 
allowed then lmin ¼ 1. In that case, optimal coding will produce codes that 
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are not non-singular if N <V (as in Table 1). One may get codes that are 
non-singular by increasing N. However, recall that N is constant in the 
standard problem of compression.

First, we will investigate the problem of compression (minimization of Λ) 
when the lengths are generalized to magnitudes (positive real numbers) that 
belong to a given multiset. Second, we will apply the results to the problem of 
compression in the non-singular scheme (the multiset contains the lengths of 
all distinct strings).

2.2. Optimal Coding with Given Magnitudes

Suppose that we wish to minimize Λ where the li’s are taken from a multiset 
L of real positive values with jLj � V . For instance, the values could be the 
length in symbols of the alphabet or the duration of the type. An assignment 
of elements of L to the li’s consists of sorting the elements of L forming 
a sequence and assigning to each li the i-th element of the sequence. For an 
assignment, only the V first elements of the sequence matter. After an 
assignment, the li’s define a subset of L, i.e. 

fl1; :::; li; :::; lVg � L:

Therefore, L is a given in addition to the pi’s. L allows one to capture 
arbitrary constraints on word length, beyond the traditional coding schemes 
(e.g. non-singular coding or uniquely decodable encoding). Perceptibility 
and distinguishability factors may prevent the use of very short strings, even 
under a uniquely decodable scheme. Phonotactics (a branch of phonology) 
shows that not all possible combinations of phonemes are present in 
a language. Certain phonemes or combinations are harder (if not impossible) 
to articulate or perceive. See Akmajian et al. (1995, Chapters 3, 4) for an 
overview of these concepts and constraints from linguistics.

This problem of compression is more general than the compression 
problem in standard information theory because:

• li is generalized as a magnitude, namely a positive real number. The 
strings, even when the magnitude is a length, are irrelevant.

• In case the magnitudes are string lengths, the non-singular coding 
scheme is obtained defining L as the lengths of all the different strings that 
can be formed. Similarly, in case of uniquely decodable coding, the string 
lengths have to allow one to find strings that produce them while preserving 
the constraints of the scheme.

These two generalizations allow us to shed light on the origins of Zipf’s 
law of abbreviation in human languages, where words do not match perfectly 
the constraints of traditional schemes, as well as in other species, where the 
coding scheme is unknown and the magnitude is measured as a time dura
tion, namely a positive real value (e.g. Heesen et al. (2019); Semple et al. 
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(2010)). Moreover, it is conceivable that certain natural communication 
systems do not build signs by combining elementary units (such as pho
nemes or syllables as in human languages) – as assumed by standard 
information theory – but rather hollistically. Such cases could be implemen
ted as strings of length 1 and their magnitude could be a real number 
indicating their expected duration.

When jLj ¼ V , there are as many different assignments as different 
sequences that can be produced from L. When jLj � V , the solution to 
the problem of compression consists of finding Λmin, the minimum value of 
Λ, and the assignments that achieve the minimum, over all the 

jLj!

ðjLj � VÞ!

assignments of elements of L to the li’s. We will show that Λ is minimized 
exclusively by all the assignments from orderings of the elements of L such 
that the V first elements are the V smallest elements of L sorted in non
decreasing order (we refer to it as nondecreasing instead of increasing 
because, strictly, an increasing order can only be obtained if all the values 
are distinct). There is only one assignment if the values in L are distinct 
and jLj ¼ V .

Suppose that nc is the number of concordant pairs of an assignment. 
ðpi; liÞ and ðpj; ljÞ are said to be concordant if 

sgnðpi � pjÞsgnðli � ljÞ ¼ 1; (8) 

where sgn is the sign function, i.e. 

sgnðxÞ ¼
x
jxj if x�0
0if x ¼ 0:

�

Equation (8) is equivalent to 

sgnðpi � pjÞ ¼ sgnðli � ljÞ�0:

The following lemma gives a crucial necessary condition of optimal 
configurations: 

Lemma 2.1. Λ ¼ Λmin implies that the sequence l1, ..., li, ..., lV is sorted in 
nondecreasing order, i.e. nc ¼ 0 over, 

ðp1; l1Þ; :::; ðpi; liÞ; :::; ðpV ; lVÞ;

because the sequence p1, ..., pi, ..., pV is sorted in nonincreasing order.

Proof. We will proof the contrapositive, namely that nc > 0 implies Λ>Λmin 
adapting arguments in previous work (Ferrer-i-Cancho, Hernández- 

174 R. FERRER-I-CANCHO ET AL.



Fernández et al., 2013). Let the pair ðpi; liÞ and ðpj; ljÞ be concordant (then 
i�j) and such that 1 � i; j � V . Without any loss of generality, suppose that 
i< j. Then pi > pj by Equation (6) (the case pi ¼ pj is excluded as the pair is 
concordant) and li > lj because the pair is concordant. If we swap li and lj, 
then Λ will become 

Λ0 ¼ Λ � piλi � pjλj þ piλj þ pjλi 

¼ Λþ ðpi � pjÞðλj � λiÞ

and then the difference between the final and the initial value of Λ becomes 

Δ ¼ Λ0 � Λ 

¼ ðpi � pjÞðλj � λiÞ:

It is easy to see that Λ>Λmin as we wished because Δ< 0. Recall that, in this 
context, pi > pj and li > lj (as explained above) and that g is a strictly 
monotonically increasing function (notice that also Δ< 0 when 
1 � j< i � V). □

An assignment stemming from sorting the V smallest elements of L in 
nondecreasing order (increasing order if the V smallest elements of L are 
distinct) is equivalent to one where nc ¼ 0. The following theorem expresses 
it formally:

Theorem 2.2. Λ ¼ Λmin if and only if two conditions are met
1. l1, ..., li, ..., lV are the V smallest elements of L.
2. The sequence l1, ..., li, ..., lV is sorted in nondecreasing order, i.e. nc ¼ 0 

over, 

ðp1; l1Þ; :::; ðpi; liÞ; :::; ðpV ; lVÞ;

because the sequence p1, ..., pi, ..., pV is sorted in nonincreasing order.

Proof. We proceed proving each direction of the equivalence separately.
(1) Λ ¼ Λmin implies conditions 1 and 2.
We will prove the contrapositive, namely that the failure of condition 1 or 

2 implies Λ>Λmin.
(a) Suppose that condition 1 fails. Then there is an element l0 in 
Lnfl1; :::; li; :::; lVg such that l0 < maxðl1; :::; li; :::; lVÞ, where n is the 
multiset difference operator. Suppose that k is the index of 
a magnitude such that 1 � k � V and lk > l0. Assigning l0 to li, Λ will 
decrease strictly because lk > l0. Thus, the original value of Λ satisfied 
Λ>Λmin.
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(b) Suppose that condition 2 fails. Then Λ>Λmin by the contrapositive 
of Lemma 2.1.
(2) Conditions 1 and 2 imply Λ ¼ Λmin.

We will show the contrapositive, namely that Λ>Λmin implies that con
dition 1 or 2 fails. Λ>Λmin can happen when condition 1 fails, as we have 
seen above. Suppose that condition 1 does not fail. Can we conclude that 
condition 2 fails? Let lmin

i and λmin
i be the values of li and λi, respectively, in 

some minimum assignment, namely one yielding Λ ¼ Λmin. By Lemma 2.1, 
the sequence lmin

1 , ..., lmin
i , ..., lmin

V is sorted in nondecreasing order and its 
corresponding number of concordant pairs is nmin

c ¼ 0. Notice that Λ>Λmin 
implies that the V smallest values of L are not identical (otherwise Λ ¼ Λmin 
for any assignment satisfying condition 1). With this clarification in mind, it 
is easy to see that there must be some i such that λi > λmin

i , or equivalently, 
li > lmin

i . If that did not happen, then one would have λj � λmin
j for each j such 

that 1 � j � V and then Λ � Λmin, contradicting Λ>Λmin. Crucially, such a 
particular i prevents the li’s from having the non-decreasing order that is 
defined by the lmin

i ’s, leading to nc > 0 by condition 1 and nmin
c ¼ 0, as we 

wished.□
The Kendall τ correlation between the pi’s and the li’s is (Conover, 1999) 

τðpi; liÞ ¼
nc � nd

V
2

� � ;

where nd is the number of discordant pairs. ðpi; liÞ and ðpj; ljÞ are said to be 
discordant if 

sgnðpi � pjÞsgnðli � ljÞ ¼ � 1:

or, equivalently, 

sgnðpi � pjÞ ¼ � sgnðli � ljÞ�0:

In our context, 

τðpi; liÞ ¼
1
V
2

� �
X

i< j
sgnðpi � pjÞsgnðli � ljÞ:

An implication of optimal coding (minimum Λ) is that τðpi; liÞ cannot be 
positive. Formally: 

Corollary 2.3. Λ ¼ Λmin implies τðpi; liÞ � 0 with equality if and only if 
nd ¼ 0.

Proof. By Lemma 2.1 Λ ¼ Λmin implies nc ¼ 0 and then 
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τðpi; liÞ ¼ �
nd

V
2

� � :

Since nd � 0 one has τðpi; liÞ � 0, with equality if and only if nd ¼ 0. □

2.3. Optimal Non-singular Coding

Under the scheme of uniquely decodable codes, standard information theory 
tells us that the minimization of L leads to (Cover & Thomas, 2006) 

li / � logN pi; (9) 

which is indeed a particular case of Zipf’s law of abbreviation. This corre
sponds to the minimization of Λ with g as the identity function in our 
framework. Here we wish to minimize Λ with li as the length of the i-th 
most frequent type when only the pi’s are prescribed under the non-singular 
coding scheme (Figure 1).

Under non-singular coding, the set of available strings consists of all the 
different strings of symbols that can be built with an alphabet of size N. There 
are Nl different strings of length l. Let S be the infinite sequence of these 
strings sorted by increasing length (the relative ordering of strings of the 
same length is arbitrary). If empty strings are not allowed, the strings in 
positions 1 to N have length 1, the strings in positions N þ 1 to N þ N2 have 
length 2, and so on as in (2) for N ¼ 2. 

Corollary 2.4. Optimal non-singular coding consists of assigning the i-th string 
of S to the i-th most probable type for 1 � i � V .

Proof. We define L as the multiset of the lengths of the strings in S. As there 
is a one-to-one correspondence between an element of L and an available 
string, the application of theorem 2.2 with g as the identity function gives 
that the optimal coding is such that

• The sequence l1; :::; li; :::; lV contains the V smallest lengths, and then 
comprises the codes that are the shortest possible strings.

• l1; :::; li; :::; lV is sorted in nondecreasing order, and then the i-th type is 
assigned the i-th shortest string.

2.4. Length as a Function of Frequency Rank in Optimal Non-singular 
Coding

We aim to derive the relationship between the rank of a type (defined 
according to its probability) and its length in case of optimal non-singular 
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codes for N � 1. Suppose that pi is the probability of the i-th most probable 
type and that li is its length. The following lemma addresses a generalization 
of the problem: 

Lemma 2.5. If rank i is assigned the shortest possible string that has length lmin 
or greater, then 

li ¼
logN ð1 � 1=NÞiþ Nlmin� 1

� �� �
for N > 1

iþ lmin � 1 for N ¼ 1:

�

(10) 

Proof. Then the largest rank of types of length l is 

i ¼
Xl

k¼lmin

Nk:

When N > 1, we get 

i ¼
Nlþ1 � Nlmin

N � 1 

and equivalently 

Nl ¼
1
N
½ðN � 1Þiþ Nlmin �:

Taking logs on both sides of the equality, one obtains 

l ¼
log 1

N ½ðN � 1Þiþ Nlmin �
� �

log N
:

The result can be generalized to any rank of types of length l as 

l ¼
log 1

N ½ðN � 1Þiþ Nlmin �
� �

log N

� �

: (11) 

Changing the base of the logarithm to N, one obtains 

l ¼ logN ð1 � 1=NÞiþ Nlmin� 1� �� �
:

Alternatively, Equation (11) also yields 

l ¼
log½ðN � 1Þiþ Nlmin �

log N
� 1

� �

¼ logN ½ðN � 1Þiþ Nlmin �
� �

� 1:

The case N ¼ 1 is trivial, one has l ¼ iþ lmin � 1. Therefore, the length of 
the i-th most probable type follows Equation (10).

The previous arguments allow one to conclude:
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Corollary 2.6. In case of optimal coding with non-singular codes, the length of 
the i-th most probable type follows Equation (10) with lmin ¼ 1.

When N > 1, one obtains 

li ¼ logN ð1 � 1=NÞiþ 1ð Þ
� �

;

the same conclusion was reached by Sudan (2006) though lacking a detailed 
explanation.

2.5. Relationships with Other Mathematical Problems

We have investigated a problem of optimal coding where magnitudes 
stem from a given multiset of values. The problem is related to other 
mathematical problems outside coding theory. Notice that Λ can be seen 
as a scalar product of two vectors, i.e. ~p ¼ fp1; :::; pi; :::; pVg and ~λ ¼
fλ1; :::; λi; :::; λVg and L as a scalar product of ~p and ~l ¼ fl1; :::; li; :::; lVg. 
When jLj ¼ V the problem is equivalent to minimizing the scalar (or dot) 
product of two vectors (of positive real values) over all the permutations 
of the content of each vector (Aadam, 2016). By the same token, the 
problem is equivalent to minimizing the Pearson correlation between ~p 
and ~λ when the content (but not the order) of each vector is preserved. 
Recall that the Pearson correlation between ~p and ~λ can be defined as 
(Conover, 1999) 

rð~p;~λÞ ¼
~p �~λ � μpμλ

σpσλ
; (12) 

where μx and σx are, respectively, the mean and the standard deviation of 
vector ~x.

The link with Pearson correlation goes back to the original coding pro
blem: such a correlation has been used to find a concordance with the law of 
abbreviation that is in turn interpreted as a sign of efficient coding (Semple 
et al., 2010). According to Equation (12), such a correlation turns out to be 
a linear transformation of the cost function. Put differently, minimizing Λ 
with prescribed pi’s and with λi as the identity function (as it is customary in 
standard coding theory), is equivalent to minimizing the Pearson correlation 
at constant mean and standard deviation of both probabilities and magni
tudes. Therefore, the Pearson correlation is a measure of the degree of 
optimization of a system when these means and standard deviations are 
constant (it is implicit that the standard deviations are not zero, otherwise 
the Pearson correlation is not defined).
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3. The Maximum Entropy Principle

Now we turn onto the question of making a safe prediction on the distribu
tion of word ranks in case of optimal non-singular coding. The maximum 
entropy principle states that (Kesavan, 2009)

Out of all probability distributions consistent with a given set of constraints, the 
distribution with maximum uncertainty should be chosen.

The distribution of word frequencies has been derived via maximum 
entropy many times with similar if not identical methods (Baek et al., 
2011; Ferrer-i-Cancho, 2005a; Liu, 2008; Mandelbrot, 1966; Naranan & 
Balasubrahmanyan, 1992a, 1993; Visser, 2013). Depending on the study, 
the target was Zipf’s rank-frequency distribution, Equation (1), (Liu, 2008; 
Mandelbrot, 1966; Naranan & Balasubrahmanyan, 1993) or its sister law with 
frequency as the random variable (Ferrer-i-Cancho, 2005a; Naranan & 
Balasubrahmanyan, 1992a), stating that the nf , the number of words of 
frequency f , satisfies approximately 

nf � f � β 

with β � 2 (Moreno-Sánchez et al., 2016; Zipf, 1949). In some cases, max
imum entropy is used as an explanation for the ubiquity of power-law-like 
distributions, with Zipf’s law for word frequencies or its sister as a particular 
case (Baek et al., 2011; Visser, 2013). For simplicity, here we revisit the 
essence of the principle focusing on how our results on optimal non- 
singular coding can be used to derive different rank distributions.

The maximum entropy principle allows one to obtain a distribution that 
maximizes the entropy of probability ranks, namely, 

H ¼ �
XV

i¼1
pi log pi 

under certain constraints on cost over the i’s and a couple of elementary 
constraints on the pi’s, i.e. pi � 0 and 

XV

i¼1
pi ¼ 1:

See Kapur and Kesavan (1992) and Harremoës and Topsøe (2001) for an 
overview. For simplicity, we assume a single non-elementary cost constraint, 
namely L, as defined in Equation (3). Also, we assume that V is not finite. See 
Visser (2013) for an analysis of the case of more than one non-elementary 
constraint and a comparison of the finite versus infinite case. See Harremoës 
and Topsøe (2001) for some critical aspects of the traditional application of 
maximum entropy.
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In our simple setup, the method leads to distributions of the form 

pi ¼
e� αli

Z
; (13) 

where α is a Lagrange multiplier and 

Z ¼
X1

j¼1
e� αlj 

is the partition function. In case of optimal non-singular coding, we have two 
cases. If N > 1 then li � logN i for sufficiently large N (Equation (10)), which 
transforms Equation (13) into a zeta distribution, i.e. 

pi ¼
1
Z

i� α (14) 

while the partition function becomes 

Z ¼
X1

j¼1
j� α;

namely the Riemann zeta function. The zeta distribution is an approximation 
to Zipf’s law for word frequencies.

When N ¼ 1 then li ¼ i (Equation (10) with lmin ¼ 1), which transforms 
Equation (13) into an exponential distribution of word frequencies, i.e. 

pi ¼
1
Z

e� αi (15) 

while 

Z ¼
X1

j¼1
e� αi:

Applying the same arguments, it is possible to obtain an exponential dis
tribution via maximum entropy for N > 1 if li ¼ i. In that case, however, the 
coding would be non-singular (every type would be coded with a string of 
distinct length) but would not be optimal. Equation (15) matches the expo
nential-like distribution that is found for certain linguistic units (Ramscar, 
2019; Tuzzi et al., 2010). In sum, this distribution may result, according to 
the maximum entropy principle, from either optimal or suboptimal coding.

Although Equation (15) is for a discrete random variable, it has the form 
of the popular exponential distribution for continuous random variables. 
That equation actually matches the definition of the customary geometric 
distribution in Equation (4). To see it, notice that Z is the summation of 
a geometric series where the first term a and the common factor r are the 
same, i.e. a ¼ r ¼ e� α. Therefore, assuming jrj< 1, i.e. α> 0, 
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Z ¼
a

1 � r 

¼
e� α

1 � e� α :

Then Equation (15) can be rewritten equivalently as 

pi ¼
1 � e� α

e� α ðe� αÞ
i
: (16) 

The substitution q ¼ 1 � e� α transforms Equation (16) into the customary 
definition of a geometric distribution in Equation (4) as we wished.

4. The Optimality of Random Typing

The results on optimal coding above allow one to unveil the optimality of 
typing at random, assuming that the space bar is hit with a certain probability 
and that letters are equally likely (Miller, 1957). It has been argued many 
times that random typing reproduces Zipf’s rank-frequency distribution (e.g. 
Li (1992), Miller (1957), Miller and Chomsky (1963), and Suzuki et al. 
(2005)). In particular, Miller concluded that the law ‘can be derived from 
simple assumptions that do not strain one’s credulity (unless the random 
placement of spaces seems incredible), without appeal to least effort, least 
cost, maximal information, or any other branch of the calculus of variations. 
The rule is a simple consequence of those intermittent silences which we 
imagine to exist between successive words.’ (Miller, 1957). Similarly, Li 
(1998) argued that ‘random typing shows that a random process can mimic 
a cost-cutting process, but not purposely.’ A similar view is found in reviews of 
Zipf’s law for word frequencies, where optimization and random typing are 
considered to be different mechanisms (Mitzenmacher, 2003; Newman, 
2005). The view of random typing as detached from cost reduction is also 
found in research on the origins of Zipf’s law of abbreviation (Chaabouni 
et al., 2019; Kanwal et al., 2017). Leaving aside the problem of the poor fit of 
random typing to their original target, i.e. the distribution of word frequen
cies (Chaabouni et al., 2019; Kanwal et al., 2017), these views are also 
problematic because random typing and least cost are not really independent 
issues. We will show it through the eye of the problem of compression.

The optimality of random typing can be seen in two ways. One through 
recoding, namely replacing each word it produces by another string so as to 
minimize L under the non-singular coding scheme. The other – indeed 
equivalent – consists of supposing that random typing is used to code for 
numbers whose probability matches that of the words produced by random 
typing. In both cases, we will show that the value of L of a random typing 
process cannot be reduced and thus it is optimal. Put differently, we will 
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show that there is no non-singular coding system that can do it more 
efficiently (with a smaller L) than random typing.

It is easy to see that the strings that random typing produces are optimal 
according to Corollary 2.4. Recall that the probability of a ‘word’ w of length l 
in random typing is (Ferrer-i-Cancho & Gavaldà, 2009, p. 838) 

plðwÞ ¼
1 � ps

N

� �l ps

ð1 � psÞ
lmin
; (17) 

where l is the length of w, ps is the probability of producing the word 
delimiter (a whitespace), N is the size of the alphabet that the words consist 
of (N > 0) and lmin is the minimum word length (lmin � 0). Hereafter we 
assume for simplicity that 0< ps < 1. If ps ¼ 0, strings never end. If ps ¼ 1, all 
the strings have length lmin and then random typing has to be analysed 
following the arguments for unconstrained optimal coding in Section 2.1.

We will show that after sorting nondecreasingly all possible strings of length at 
least lmin that can be formed with N letters, the i-th most likely type of random 
typing receives the i-shortest string. First, Equation (17) indicates that all words 
of the same length are equally likely and plþ1ðwÞ � plðwÞ for l � lmin because ps, 
lmin and N are constants. Therefore, the ranks of words of length l are always 
larger than those of words of length l þ 1. Keeping this property in mind, words 
of the same length are assigned an arbitrary rank. Second, plðwÞ> 0 for all the Nl 

different words of length l that can be formed. Therefore, all available strings of 
a given length are used. The optimality of random typing for N ¼ 2 and lmin ¼ 1 
can be checked easily in Table 5. The exact relationship between rank and length 
in random typing will be derived below.

Random typing satisfies a particular version of Zipf’s law of abbreviation 
where the length of a word (l) is a linear function of its log probability (log 
p), i.e. 

Table 5. The probability (pi), the length (li) of the i-th 
most frequent string (code) or random typing with 
N ¼ 2 and lmin ¼ 1. li is calculated via Equation (10) 
with N ¼ 2 and lmin ¼ 1. pi is calculated applying 
lmin ¼ 1, N ¼ 2 and li to Equation (19).

Code i li pi

a 1 1 ps=2
b 2 1 ps=2
aa 3 2 ð1 � psÞps=4
ab 4 2 ð1 � psÞps=4
ba 5 2 ð1 � psÞps=4
bb 6 2 ð1 � psÞps=4
aaa 7 2 ð1 � psÞ

2ps=8
... ... ... ...
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l ¼ a log pþ b; (18) 

where a and b are constants (a< 0). Namely, the probability of a word is 
determined by its length (the characters constituting the words are irrele
vant), Equation (17) allows one to express l as a function of pðwÞ. 
Rearranging the terms of Equation (17), taking logarithms, and replacing 
pðwÞ by p, one recovers Equation (18) with 

a ¼ log
1 � ps

N

� �� 1 

and 

b ¼ a log
ð1 � psÞ

lmin

ps
:

Does random typing also satisfy Zipf’s law for word frequencies (Equation 
(1))? Mandelbrot was aware ‘that the relation between rank and probability is 
given by a step function’ for the random typing model we have considered 
here, but he argued that ‘such a relation cannot be represented by any simple 
analytic expression’ (Mandelbrot, 1966, p. 364). Knowing that random typing 
is optimal from the standpoint of non-singular coding it is actually possible 
to obtain a simple analytic expression for pi, the probability that random 
typing produces a word of rank i. Replacing plðwÞ by pi and l by li, Equation 
(17) becomes 

pi ¼
1 � ps

N

� �li ps

ð1 � psÞ
lmin
; (19) 

where li the length of the word of rank i that is given by Equation (10). To our 
knowledge, this is the first exact Equation for pi. In previous research, only 
approximate expressions for pi have been given (Li, 1992; Mandelbrot, 1966; 
Miller, 1957; Miller & Chomsky, 1963). These non-rigorous approximations 
correspond to the Zipf-Mandelbrot law, 

pi / ðiþ bÞ� α
; (20) 

a generalization of Zipf’s law (Equation (1)) with an additional parameter 
b> 0 (Mandelbrot, 1966), that is actually a smoothed version of Equation 
(19). If ranks are unbounded as in the random typing model, the Zipf- 
Mandelbrot law can be defined exactly as 

pi ¼
1

ζðα; bÞ
ðiþ bÞ� α

; (21) 

where 
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ζðα; bÞ ¼
X1

i¼0
ðiþ bÞ� α (22) 

is the Hurwitz zeta function. Equation (21) becomes the definition of the zeta 
distribution (Equation (14)) when b ¼ 1.

Figure 2(a) shows pi versus i for N ¼ 26 and ps ¼ 0:18 applying Equation 
(19). These are the parameters that Miller (1957) used in his classic article on 
random typing to mimic English. The stepwise shape, that is missing in the 
Zipf-Mandelbrot law (Equations (20) and (21)), can be smoothed by intro
ducing a bias towards certain letters (Ferrer-i-Cancho & Elvevåg, 2009; Li, 
1992) as in the original setup all letters are equally likely. Reducing N as 
much as possible will also smooth the shape (reducing N is a particular case 
of bias that consists of turning 0 the probability of certain symbols). Figure 2 
(b) shows the smoothing effect of N ¼ 2 (corresponding to the examples 
given in Table 5). Notice that N cannot be reduced further: we have shown 
above that N ¼ 1 transforms the distribution of ranks of random typing into 
a geometric distribution.

5. Discussion

In his pioneering research, Zipf found a tendency of more frequent words to 
be shorter. He termed this observation the law of abbreviation (Zipf, 1949). 
However, he never proposed a functional dependency or mathematical 
model for the relationship between frequency and length.

Here we have filled a gap in standard information theory concerning 
optimal non-singular coding, that predicts li � log i, where i is the prob
ability rank. This result complements the well-known relationship li �
� log pi predicted by optimal uniquely decodable coding (Cover & 
Thomas, 2006). Derivations of a logarithmic relationship between the length 
of a word and its probability rank can be found in classic work (Mandelbrot, 
1966; Rapoport, 1982). However, our derivation is novel in the sense of 
providing a general exact formula (not an approximation; covering N � 1 
and lmin � 0) and involving optimal non-singular coding in the argument. It 
was clear to Mandelbrot that ‘given any prescribed set of word probabilities, 
the average number of letters per words is minimized if the list of words, 
ranked by decreasing probability, coincides with the list of the V shortest letter 
sequences’ (Mandelbrot, 1966, p. 365) but he never provided an exact formula 
for the relationship between li and i as far as we know. Indeed, he actually 
thought it was impossible (Mandelbrot, 1966). Likewise, Rapoport did not 
take information theoretic optimality considerations into account and sim
ply stated that ‘we shall want the shortest words to be the most frequent’ 
(Rapoport, 1982, p. 9).
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Traditionally, quantitative linguistics research has been based on the fit of 
power-law-like models (Sigurd et al., 2004; Strauss et al., 2007). Surprisingly, 
the predictions of information theory reviewed above have largely been 
neglected. The problem concerns not only the relationship between length 
and frequency but also parallel quantitative linguistics research where fre
quency is replaced by the frequency rank (see Strauss et al. (2007, p. 274) and 
references therein). Some notable exceptions are discussed in the following.

In the work by Hammerl (1990), both the relationship li � log pi and li �
log i are considered. He explains that Guiraud (in 1959) derived li � log i by 
‘purely combinatorial considerations, where all possible combinations of letters 
in the respective languages were allowed’ (Hammerl, 1990).1 Unfortunately, 
we have not been able to find a proper reference to Guiraud’s work of 1959. 
Therefore, we cannot tell if Guiraud was following some optimization 
hypothesis akin to optimal singular-coding or if he actually provided an 
exact formula like ours. Finally, the logarithmic relationship between the 
frequency of a word and its length in phonemes has also been inferred based 
on empirical data collected for overall eight languages (see Equation (11) in 
Guiter (1974)). However, this particular study is bare of any mathematical/ 
information theoretic considerations.

Besides historical considerations, our findings also have practical implica
tions for empirical research on the law of abbreviation as an indication of 
optimal coding. First, it is usually assumed that a significant negative corre
lation between frequency and magnitude is needed for efficient coding 
(Bezerra et al., 2011; Ferrer-i-Cancho & Lusseau, 2009; Heesen et al., 2019; 
Semple et al., 2010). Our analyses indicate that a non-significant correlation 
can still be associated with efficient coding. For instance, we have seen that 
optimal coding with prescribed probabilities and magnitudes coming from 
some given multiset is equivalent to τðpi; liÞ � 0 (Corollary 2.3). The same 
conclusion can be reached from optimal uniquely decodable coding, where 
all strings must have the same length when types are equally likely (recall 
Equation (9)). Therefore, the influence of compression could be wider than 
commonly believed. What cannot be attributed to compression is the sig
nificant positive correlation between frequency and magnitude that has been 
found in a subset of the repertoire of chimpanzee gestures, i.e. full body 
gestures (Heesen et al., 2019), in the vocalizations of female (but not male) 
hyraxes (Demartsev et al., 2019), phrases of male gibbon solos (Clink et al., 
2020), computer experiments with neural networks (Chaabouni et al., 2019) 
and also in European heraldry (Miton & Morin, 2019). Importantly, this 
illustrates that compression – as reflected in the law of abbreviation – is not 
necessarily found in all communication systems, which undermines argu
ments that quantitative linguistic laws are unavoidable and hence ‘mean
ingless’ (see also Ferrer-i-Cancho, Forns et al. (2013) for the case of 
Menzerath’s law).
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Another argument along those lines is based on random typing: if random 
typing recreates Zipfian laws, then surely they are not an interesting subject 
of study (Miller, 1957). However, surprisingly, random typing turns out to be 
an optimal encoding system. Thus, finding linguistic laws in random typing 
does not preclude that these laws can be explained by information theoretic 
principles. However, while we have unveiled the optimality of random 
typing, we emphasize that we have done it only from the perspective of 
optimal non-singular coding. The fact that random typing and optimization 
are not independent issues as commonly believed (Chaabouni et al., 2019; 
Kanwal et al., 2017; Li, 1998; Miller, 1957), does not imply that random 
typing satisfies to a sufficient degree the optimization constraints imposed on 
natural languages.

We have seen that optimal non-singular coding predicts both a form of 
Zipf’s law of abbreviation as well as a power-law distribution consistent with 
Zipf’s law for word frequencies when combined with the maxent principle, 
revisiting an old argument by Mandelbrot (Mandelbrot, 1966). The capacity 
of maxent to obtain Zipfian laws as well as the less popular exponential 
distribution of parts-of-speech (Tuzzi et al., 2010) based on optimal and 
suboptimal coding considerations suggests that the principle should be 
considered as a critical component of a compact theory of linguistic patterns 
in general. For instance, pðdÞ, the probability that two syntactically related 
words are at distance d (in words), exhibits an exponential decay that has 
been derived with the help of a combination of maxent and a constraint on 
the average value of d (Ferrer-i-Cancho, 2004).

The principle of maximum entropy used to derive Zipf’s law for word 
frequencies ensures that one is maximally uncertain about what one does not 
know (Kesavan, 2009). In the context of natural languages, a further justifica
tion of the use of the principle is that IðS;RÞ, the mutual information 
between words (S) and meanings (R) satisfies 

IðS;RÞ � HðSÞ; (23) 

where HðSÞ is the entropy of words, namely the entropy of word probability 
ranks as defined above. The inequality in Equation (23) follows from ele
mentary information theory (Cover & Thomas, 2006), and has been applied 
to investigate the properties of dual optimization models of natural commu
nication (Ferrer-i-Cancho & Díaz-Guilera, 2007). IðS;RÞ is a measure of the 
capacity of words to convey meaning: maximizing IðS;RÞ one promotes that 
words behave like meaning identifiers (Ferrer-i-Cancho, 2018, Section 3). 
Therefore, Equation (23) suggests that the maximum entropy principle in the 
context of word entropy maximizes the potential of words to express mean
ing. The hypothesis of pressure to maximize HðSÞ is supported by the skew 
towards the right that is found in the distribution of HðSÞ in languages across 
the world (Bentz et al., 2017).
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The challenge of mathematical modelling is to find a compromise between 
parsimony and predictive power (Burnham & Anderson, 2002). Concerns 
about parsimony are a recurrent theme when modelling Zipf’s law for word 
frequencies (Ferrer-i-Cancho, 2018; Mandelbrot, 1966; Visser, 2013). As for 
maximum entropy models, it has been argued that Shannon entropy and 
a logarithmic constraint offer the simplest explanation for the origins of the 
law (Visser, 2013). However, the argument is incomplete unless 
a justification for such a constraint is provided. Here we have shown how 
the logarithmic constraint follows from optimal non-singular coding. There 
are many possible explanations for the origins of Zipf’s law based on max
imum entropy (Baek et al., 2011; Ferrer-i-Cancho, 2005a; Liu, 2008; 
Mandelbrot, 1966; Naranan & Balasubrahmanyan, 1992a, 1992b, 1993; 
Visser, 2013), and many more through other means (Mitzenmacher, 2003; 
Newman, 2005), but only compression can shed light on the origins of both 
Zipf’s law for word frequencies and Zipf’s law of abbreviation. The explana
tion of Zipf’s law for word frequencies should not be separated from the 
explanation of other quantitative laws. Otherwise, the space of possible 
models is not sufficiently constrained (Stumpf & Porter, 2012), and the 
resulting ‘theory’ is not a well organized theory but a patchwork of models 
(Ferrer-i-Cancho, 2018).

Our theoretical framework is highly predictive in at least two senses. First, 
optimal coding predicts Zipf’s law of abbreviation, but adherence to 
a traditional scheme (non-singular coding or uniquely decodable coding) is 
not necessary. It suffices to assume that the magnitudes come from some 
predefined multiset. Second, its applicability goes beyond laws from Zipf’s 
classic work. It can also be applied to Menzerath’s law, the tendency of 
constructs with more parts to be made of smaller parts, i.e. the tendency of 
words with more syllables to be made of shorter syllables (Altmann, 1980). 
Taking the number of parts of constructs as probabilities of types (pi’s) and 
the size of the parts as magnitudes (li’s) and simply assuming that the number 
of parts are constant, Menzerath’s law follows applying theorem 2.2 (Gustison 
et al., 2016). This allows one to put forward optimization as a possible 
hypothesis to explain the pervasiveness of the law in nature (e.g. Boroda 
and Altmann (1991), Gustison et al. (2016), and Shahzad et al. (2015)).

Note

1. The German original reads ‘Guiraud (1959) hat aus rein kombinatorischen 
Überlegungen, wo alle möglichen Buchstabenkombinationen aus den 
Buchstaben der jeweiligen Sprache bei der Bildung von Wörtern zugelassen 
wurden [...] folgende Abhängigkeit [...] abgeleitet.’ This is followed by the 
formulae given above in the main text.
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