Towards a Computational Model of Grammaticalization and Lexical Diversity

Christian Bentz & Paula Buttery
cb696@cam.ac.uk
Outline

Background
- Lexical diversity
- Grammaticalization

Computational Model
- Architecture
- Outcome

Future Directions
- Model improvement
Lexical diversity

Definition

Definition: The **distribution of word forms** used to encode a **constant information content**
Lexical diversity

Definition

Definition: The distribution of word forms used to encode a constant information content

Parallel texts:
- Universal Decalaration of Human Rights (∼ 400 languages)
- Parallel Bible Corpus (∼ 1000 languages)
- Europarl (21 languages)
Lexical diversity

Driving factors

- **Morphological marking**
 - English: *the ship*
 - German: *das Schiff, dem Schiff(e), des Schiffes*

- **Compounding**
 - English: *key to the cabin of the captain of the ship*
 - German: *Schifffahrtskapitaenkabinenschluessel*

- **Lexicon**
 - English: *close*
 - German: *zuschliessen, abschliessen*

- **Orthography**
 - etc.
Lexical diversity

Driving factors

- **Morphological marking**
 English: *the ship*
 German: *das Schiff, dem Schiff(e), des Schiffes*

- **Compounding**
 English: *key to the cabin of the captain of the ship*
 German: *Schifffahrtskapitaenkabinenschlüssel*
Lexical diversity

Driving factors

- **Morphological marking**

 English: *the ship*

 German: *das Schiff, dem Schiff(e), des Schiffes*

- **Compounding**

 English: *key to the cabin of the captain of the ship*

 German: *Schifferfahrtskapitäenkabinenschlüssel*

- **Lexicon**

 English: *close*

 German: *zuschliessen, abschliessen*
Lexical diversity

Driving factors

- **Morphological marking**
 English: *the ship*
 German: *das Schiff, dem Schiff(e), des Schiffes*

- **Compounding**
 English: *key to the cabin of the captain of the ship*
 German: *Schifffahrtskapitaenkabinenschluessel*

- **Lexicon**
 English: *close*
 German: *zuschliessen, abschliessen*

- **Orthography**

- etc.
Lexical diversity

Quantitative measure

Zipf-Mandelbrots law: Order types (word forms delimited by white spaces) according to their token frequencies (Zipf, 1949; Mandelbrot, 1953)
Lexical diversity

Quantitative measure

Zipf-Mandelbrots law: Order types (word forms delimited by white spaces) according to their token frequencies (Zipf, 1949; Mandelbrot, 1953)

![Graph showing Zipf-Mandelbrot approximation for English and German languages]

Christian Bentz & Paula Buttery cb696@cam.ac.uk — Grammaticalization

5/18
Lexical diversity

Zipf-Mandelbrot’s law

\[f(r_i) = \frac{C}{\beta + r_i^\alpha}, \]

\(C > 0,\)

\(\alpha > 0,\)

\(\beta > -1,\)

\(i = 1, 2, \ldots, n\)
Lexical diversity

Zipf-Mandelbrot’s law

\[f(r_i) = \frac{C}{\beta + r_i^\alpha}, \]

\[C > 0, \]
\[\alpha > 0, \]
\[\beta > -1, \]
\[i = 1, 2, \ldots, n \]
Diachrony

Diachrony

10a) MnE and OE Genesis

- MnE Gen: \(\alpha = 1.22\)
- \(B = 5.4\)
- \(C = 12168\)

- OE Gen: \(\alpha = 1.03\)
- \(B = 1.53\)
- \(C = 3361\)

10b) MnE Genesis + lemmatized version

- MnE Gen: \(\alpha = 1.22\)
- \(B = 5.4\)
- \(C = 12168\)

- MnE Gen lemma: \(\alpha = 1.29\)
- \(B = 8.22\)
- \(C = 16803\)
Synchrony

Synchrony

Lexical diversity

- Seems to be reduced in contact scenarios (non-native language learning, see Trudgill, 2011; Lupyan & Dale 2011; McWhorter, 2007)
Lexical diversity

- Seems to be reduced in contact scenarios (non-native language learning, see Trudgill, 2011; Lupyan & Dale 2011; McWhorter, 2007)

Question

WHY DO LANGUAGES GET HIGH LEXICAL DIVERSITIES IN THE FIRST PLACE?
Grammaticalization

Definition

In the final stage of grammaticalization frequently co-occurring words merge by means of phonological fusion (Bybee, 2003: 617) and hence 'morphologize' to built inflections and derivations.
Definition

In the final stage of grammaticalization, frequently co-occurring words **merge** by means of phonological fusion (Bybee, 2003: 617) and hence 'morphologize' to build **inflections** and **derivations**.

Cline

content item > grammatical word > clitic > inflectional affix

(Hopper and Traugott, 2003: 7)
Grammaticalization

Definition

In the final stage of grammaticalization, frequently co-occurring words **merge** by means of phonological fusion (Bybee, 2003: 617) and hence ‘morphologize’ to build **inflections** and **derivations**.

Cline

- **content item** → **grammatical word** → **clitic** → **inflectional affix**

(Hopper and Traugott, 2003: 7)

Example

- Old English *līc* 'body' → *-ly*
- Latin *cantare habeo* ‘I have to sing’ → Italian *canterò*
Grammaticalization

Hypothesis

Grammaticalization \rightarrow **increasing** lexical diversity
Deflexion \rightarrow **decreasing** lexical diversity
Grammaticalization

Hypothesis

Grammaticalization → **increasing** lexical diversity
Deflexion → **decreasing** lexical diversity

Question

Can we computationally model the impact of grammaticalization on lexical diversity?
Computational Model

Starting point: Fijian UDHR

- parallel text, control for constant information content
- analytic language with low lexical diversity
Computational Model

Starting point: Fijian UDHR

- parallel text, control for constant information content
- analytic language with low lexical diversity

Process

- **merge** a given percentage \((p_m)\) of **frequently co-occurring words** over several generations \((n_G)\)
Computational Model

Starting point: Fijian UDHR

- parallel text, control for constant information content
- analytic language with low lexical diversity

Process

- merge a given percentage \((p_m)\) of frequently co-occurring words over several generations \((n_G)\)

Endpoint

- Do we arrive at lexical diversities similar to the ones for German or Hungarian?
Architecture

Input text

p_m: % merge

p_V: % replace

r_R: range of ranks

Output text
Output

\[p_m = 2.5, \ p_v = 0; \ r_R = 0; \ n_G = 10 \]
Output

\[p_m = 2.5, \ p_v = 0; \ r_R = 0; \ n_G = 10 \]
Words created in English

- *of the* → genitive marked article, German: *des*

- *of the* → genitive marked article, German: *des*
Output

Words created in English

- *of the* → genitive marked article, German: *des*
- *in the* → preposition merged with article, Italian: *in* + *il*
 rendering *nel*
Output

Words created in English

- **of the** → genitive marked article, German: *des*
- **in the** → preposition merged with article, Italian: *in + il*
 rendering *nel*
- **topromote** → preposition + verb, German: *zusehen, zuschliessen*
Output

Words created in English

- **of the** → genitive marked article, German: *des*
- **in the** → preposition merged with article, Italian: *in + il* rendering *nel*
- **top promote** → preposition + verb, German: *zusehen, zuschliessen*
- **of society** → preposition + noun (case prefix?)
Words created in English

- **ofthe** → genitive marked article, German: *des*
- **inthe** → preposition merged with article, Italian: *in + il*
 rendering *nel*
- **topromote** → preposition + verb, German: *zusehen, zuschliessen*
- **ofsociety** → preposition + noun (case prefix?)
- **humanrights, humanbeing** → compounding, German: *Menschenrechte*
Output

Words created in English

- `ofthe` → genitive marked article, German: *des*
- `inthe` → preposition merged with article, Italian: *in + il*
 rendering *nel*
- `topromote` → preposition + verb, German: *zusehen, zuschliessen*
- `ofsociety` → preposition + noun (case prefix?)
- `humanrights, humanbeing` → compounding, German: *Menschenrechte*
- `everyonehastherighttofreedomof, withoutanydiscrimination`
Future Directions

Model improvement

- Exploring models with varying parameters for vocabulary replacement and merging of bigrams (comparison to actual language change data)
Future Directions

Model improvement

- Exploring models with varying parameters for vocabulary replacement and merging of bigrams (comparison to actual language change data)
- More realistic model by parsing and POS tagging
Future Directions

Model improvement

- Exploring models with varying parameters for vocabulary replacement and merging of bigrams (comparison to actual language change data)
- More realistic model by parsing and POS tagging
- Considering frequency measures beyond bigram frequencies
Collaborators

Douwe Kiela Felix Hill Andrew Caines
Thank You!

¡chris@christianbentz.de!