Variation in Word Frequency Distributions: Definitions, Measures and Implications for a Corpus-Based Language Typology

Christian Bentz, Dimitrios Alikaniotis, Tanja Samardžić & Paula Buttery

To cite this article: Christian Bentz, Dimitrios Alikaniotis, Tanja Samardžić & Paula Buttery (2017): Variation in Word Frequency Distributions: Definitions, Measures and Implications for a Corpus-Based Language Typology, Journal of Quantitative Linguistics, DOI: 10.1080/09296174.2016.1265792

To link to this article: http://dx.doi.org/10.1080/09296174.2016.1265792

Published online: 17 Jan 2017.

Submit your article to this journal

Article views: 41

View related articles

View Crossmark data
Variation in Word Frequency Distributions: Definitions, Measures and Implications for a Corpus-Based Language Typology

Christian Bentza,b, Dimitrios Alikaniotisa, Tanja Samardžićc and Paula Butterya

aDepartment of Theoretical and Applied Linguistics, University of Cambridge, Cambridge, United Kingdom; bDepartment of General Linguistics, University of Tübingen, Tübingen, Germany; cURPP on Language and Space, University of Zürich, Zürich, Switzerland

ABSTRACT
Word frequencies are central to linguistic studies investigating processing difficulty, learnability, age of acquisition, diachronic transmission and the relative weight given to a concept in society. However, there are few cross-linguistic studies on entire distributions of word frequencies, and even less on systematic changes within them. Here, we first define and test an exact measure for the relative difference between distributions – the Normalised Frequency Difference (NFD). We then apply this measure to parallel corpora in overall 19 languages, explaining systematic variation in the frequency distributions within the same language and across different languages. We further establish the NFD between lemmatised and un-lemmatised corpora as a frequency-based measure of inflectional productivity of a language. Finally, we argue that quantitative measures like the NFD can advance language typology beyond abstract, theory-driven expert judgments, towards more corpus-based, empirical and reproducible analyses.

1. Introduction
Words that occur more often in spoken and written corpora are more likely to be processed with ease (Freedman & Loftus, 1971; Loftus & Suppes, 1972; Solomon & Howes, 1951; Whaley, 1978), acquired early in life (Roy, Frank, & Roy, 2009), regularised slower (Bybee, 2007; Colafori et al., 2015; Cuskley et al., 2014; Lieberman, Michel, Jackson, Tang, & Nowak, 2007), resistant to change (Pagel, Atkinson, & Meade, 2007; Wieling, Montemagni, Nerbonne, & Baayen, 2014; Wieling, Nerbonne, & Baayen, 2011) and involved in the communication of concepts with high saliency in a society (Michel et al., 2011).

In psycholinguistics, the effect of word frequency on lexical decision and word naming is one of the most robust and well-known findings since the 1950s

CONTACT
Christian Bentz chris@christianbentz.de
© 2017 Informa UK Limited, trading as Taylor & Francis Group
It was argued early on that any psycholinguistic task involving lexical stimuli needs to control for frequency of occurrence (Loftus & Suppes, 1972; Whaley, 1978). Importantly, this effect is not limited to surface frequencies of base forms, but extends to complex morphological forms (see Moscoso del Prado Martín, Kostić, & Baayen, 2004 for an overview). In consequence, the link between word frequency and processing difficulty has repercussions on first and second language acquisition (Ellis, 2002; Ellis & Collins, 2009; Freeman, 1975; Goldschneider & DeKeyser, 2001; Larsen-Freeman, 1976). A recent large-scale longitudinal study on first language acquisition suggests that frequencies in the caregivers input also predict the age of acquisition of words, notably for both content words (e.g. nouns) and closed class function words (Roy et al., 2009).

In historical linguistics, frequencies are taken as indicators of synchronic and diachronic transmission processes and change. For example, Bybee (2007, 28) points out that Old English strong verbs had a higher probability of becoming weak verbs if they had low frequencies. This directly relates to the synchronic fact that the most frequent verbs in Modern English tend to be irregulars (i.e. strong verbs). This observation was taken up in a large-scale quantitative study by Lieberman, Michel, Jackson, Tang, and Nowak (2007) showing that the ‘rate of decay’ of irregulars can be estimated based on their frequencies (see also Cuskley et al., 2014; Colaïori et al., 2015 for quantitative analyses and agent-based modelling). In a similar vein, dialectological studies report significant effects of frequencies on standardisation and change in Dutch and Tuscan dialects (Wieling et al., 2011, 2014).

Recently, massive diachronic corpora such as the google ngram corpus (Michel et al., 2011) have become available and allow researchers to track word frequency changes since ca. the eighteenth century in a considerable proportion of the books printed across seven languages – though see Koplenig (2015a) for several issues concerning a meaningful interpretation of this data.

Besides an abundance of literature on frequency changes in specific words (or groups of words), there is also research on word frequency distributions as a whole. This is one of the core subjects of quantitative linguistics in the spirit of Zipf (1932, 1935, 1949), Yule (1944), and Köhler, Altmann, and Piotrowski (2005). The quantitative models available are most exhaustively discussed by Baayen (2001), as well as Popescu et al. (2009). More recently, several studies have attempted to quantify linguistically meaningful variation in word frequency distributions over time (Bentz, Kiela, Hill, & Buttery, 2014; Bochkarev, Solovyev, & Wichmann, 2014; Koplenig, 2015b), and across many languages (Bentz, Verkerk, Kiela, Hill, & Buttery, 2015; Corral, Boleda, & Ferrer-i-Cancho, 2015).

However, it is still not well understood exactly which factors influence the shape of word frequency distributions to what extent. Especially in the context
of studying potential causes of changes it is important to know which proportion of variance can be attributed to factors such as lexical change (i.e. changes in the base vocabulary due to neologisms or loanwords), morphological marking (e.g. verbal and nominal inflexion), word formation (e.g. derivation and compounding), as well as contractions or clitics. In the following we set out to start disentangling these factors.¹

We first define the **Normalised Frequency Difference** (NFD) as a measure of the relative difference in two frequency distributions (Section 3). This measure is then applied in Analysis 1 (Section 4) to assess the distributional differences in English and German parallel corpora before and after removing inflectional markers, derivational morphology, compounds and contractions/clitics. Analysis 2 (Section 5) focuses on inflectional morphology and measures the NFD difference for lemmatised and un-lemmatised parallel corpora across 19 languages. It is shown that the NFD can be used as a frequency-based, cross-linguistic inflexion index. The sensitivity of this inflexion index to corpus size is tested in Analysis 3 (Section 6). Our final Analysis (Section 7) then adds another level of detail by comparing the impact of lemmatisation on different parts of speech for English and Estonian.

Besides an overall discussion of our results in Section 8, we further point towards other lexical diversity measure that could be used in parallel to the NFD, and why we think the NFD has some advantages over these (Section 8.1). Finally, we argue that quantitative measures like the NFD in combination with state-of-the-art computational tools and corpora enables an empirical and reproducible language typology that does not longer have to rely on expert judgements only (Section 8.2).

2. Definition of word types and word tokens

Any measure of variation in word frequency distributions has to be based on the distinction between **word types** and **word tokens**. Since we work with written language, we assume a technical definition. A **word type** is here defined as a unique string of unicode characters (lower case) delimited by non-alphanumeric characters (e.g. white spaces and punctuation marks). A **word token** is then defined as any recurring instance of a specific word type.

Though these or similar definitions of wordhood are taken as a given in most corpus and computational linguistic studies, they are not necessarily uncontroversial from a linguistically more informed point of view. Haspelmath (2011) and Wray (2014) point out that there is a whole range of orthographic, phonetic and distributional definitions of wordhood, which can yield different results for specific cases. For example, writing compounds with or without white spaces is an orthographic convention that does not necessarily reflect a difference in pronunciation. Arguably, there is no more of a pause between the English *car park* than the German *Parkplatz*.
In theory, such orthographic conventions change word types and hence the corresponding token frequencies. However, in practice the important question is how much of a difference we actually find.

In the following we propose an exact method to measure the variance in word frequency distributions. This method allows us to measure the difference between any two distributions in general, and the actual impact that changes in word types will have on their token frequencies in language corpora more specifically.

3. The Normalised Frequency Difference (NFD)

An example of two differing frequency distributions, namely a uniform distribution of equal frequencies and a non-uniform distribution of varying frequencies, can be seen in the lower left panel of Figure 1. In linguistic examples the ranks (x-axis) of these ordered frequency distributions correspond to word types, and the frequencies on the y-axis to the number of tokens per word type in a given corpus.

Now, let $T = \{t_1, t_2, \ldots, t_V\}$ be the set of word types of size V in a corpus, i.e. its vocabulary, and $F = (f_1, f_2, \ldots, f_V)$ be the distribution of values corresponding
to the frequencies of occurrences of each word type in the corpus such that
\(f_i = \text{freq}(t_i) \). The overall number of tokens \(N \) in the corpus \(C \) is therefore:

\[
N^C = \sum_{i=1}^{V} f_i \tag{1}
\]

To get a better overview of the rank/frequency profile we follow Zipf (1932, 1935, 1949) and rank the distribution of token-counts (i.e. the distribution \(F \)) from highest to lowest. Let \(F^A, F^B \) be the two ranked word frequency distributions with vocabulary sizes \(V^A \) and \(V^B \) taken from two different corpora. We can proceed to calculate the absolute difference in token frequencies for any given rank \(i \) as:

\[
\Delta Freq(A, B, i) = \begin{cases}
|f_i^A - f_i^B| & \text{if } i \leq V^A \land i \leq V^B \\
 f_i^A & \text{if } i \leq V^A \land i > V^B \\
 f_i^B & \text{otherwise}
\end{cases} \tag{2}
\]

Note that the number of ranks in two distributions might differ due to differing numbers of types, i.e. differing vocabulary sizes \(V^A \) and \(V^B \). For every rank we take the absolute difference in frequencies if frequencies for both \(F^A \) and \(F^B \) are available. If there are no frequencies available in either \(F^A \) or \(F^B \), i.e. they are effectively 0, then we take the frequency of the other vector as absolute difference.

These absolute frequency differences per rank are indicated in the upper left panel of Figure 1 as \(\Delta Freq \). It is important to note here that in many cases the token frequencies compared per rank belong to different word types. For example, if we compare the word frequency distribution of an English and a German text, then the word types in rank 1 are likely to be \textit{the} and \textit{und} ‘and’. So there is no direct correspondence between them in terms of a translational equivalent or the like. What brings them together in rank 1 is solely the fact that both have the highest token frequencies in the respective texts.

Based on the frequency difference per rank given in Equation (2) we then define the \textit{Normalised Frequency Difference} (NFD) between two distributions as:

\[
NFD(A, B) = \frac{\sum_{i=1}^{\max(V^A, V^B)} \Delta Freq(A, B, i)}{\sum_{i=1}^{V^A} f_i^A + \sum_{i=1}^{V^B} f_i^B} \tag{3}
\]

or, by substituting the denominator with (1):

\[
NFD(A, B) = \frac{\sum_{i=1}^{\max(V^A, V^B)} \Delta Freq(A, B, i)}{N^A + N^B} \tag{4}
\]
In the numerator we have the sum of frequency differences per rank, i.e. the sum of all ΔFreq in the left upper panel of Figure 1. The denominator corresponds to the sum of the overall token frequencies for both distributions, i.e. the sum of the grey and black bars in the lower left panel. An intuitive interpretation of the NFD is that it is the percentage of token frequency differences per overall number of tokens.

The actual non-uniform and uniform token frequency distributions chosen for illustration in Figure 1 are:

\[F^A = (45, 20, 15, 10, 5, 1, 1, 1, 1, 1) \]
\[F^B = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10) \]

The NFD for these is:

\[NFD(A, B) = \frac{100}{100 + 100} = 0.5 \]

This means that the sum of token frequency differences amounts to 50% of the overall number of tokens in the uniform and non-uniform distribution together. Generally, we have that \(0 < \text{NFD} < 1 \). The normalised frequency difference is 0 when both vectors are exactly the same \((F^A = F^B) \). The NFD is 1 if and only if one of the vectors consists of zeros and the other of at least one non-zero element. Hence, the NFD for real word frequency distributions will range in between 0 and 1, with values closer to 1 indicating bigger frequency differences.

Note, also, that the ranking of frequencies of two distributions from highest to lowest before calculating the frequency differences will yield the minimum NFD, whereas ranking one of the distributions from highest to lowest frequency and the other from lowest to highest would render the maximum NFD.

In theory it does not make any difference which of these we choose to measure the difference between two distributions, as long as our choice is consistent. However, conceptually it makes sense to rank frequencies from highest to lowest, since this way we get a better overview of the frequency profile.

Finally, the lower right panel of Figure 1 illustrates another convention in word frequency research. We transform the ranks and frequencies by applying the natural logarithm and we use a scatterplot of dots instead of a barplot. This is a convention for plotting – not for calculating the NFD – which helps to better see the shapes of the whole distributions even if they have very long tails. Note that we do not logarithmically transform the ΔFreqs in the upper panel, since we do not want to reduce the visual salience of frequency differences. However, we do logarithmically transform the values of the ranks in order to align them with the lower plot.
4. Analysis 1: Inflexion, derivation, compounds and contractions/clitics in English and German

In our first analysis we use the NFD to measure differences between word frequency distributions before and after changing word types by (1) removing inflectional morphology, (2) removing derivational morphology, (3) splitting compounds and (4) removing contractions and clitics. We want to know the impact each of these transformations has on frequency distributions independent of the others. Hence, we proceed by applying them separately. The corpora used, methods and results are outlined in the following.

4.1. Materials

We compiled parallel corpora for English and German using parts of the Open Subtitles Corpus (Tiedemann, 2012, http://opus.lingfil.uu.se/OpenSubtitles2013.php), the Europarl Corpus (Koehn, 2005, http://www.statmt.org/europarl/), the Universal Declaration of Human Rights (http://www.unicode.org/udhr/index_by_name.html) and the Book of Genesis (http://homepages.inf.ed.ac.uk/s0787820/bible/). More detailed information about the composition of the parallel corpus sample can be found in Table 1. The advantage of this sample is that the text passages are sentence aligned and hence exact translational equivalents. This parallel structure provides a natural means of controlling for constant content, which is a confound in non-parallel texts. Moreover, the sample is balanced between spoken and written language as well as different registers (colloquial, political, legal, religious). The disadvantage is that the sample is small (9211 tokens in English, 8304 in German). However, for this analysis keeping the sample small was necessary to enable maximally informed, manual transformations in the morphology.

4.2. Methods

For the English and German parallel corpora outlined in Table 1 we first set all letters to lower case. Consistent with our definition in Section 2 we take non-alphanumeric characters as word type delimiters. However, in this analysis

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Part</th>
<th>No. tokens English</th>
<th>No. tokens German</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSC*</td>
<td>500 lines</td>
<td>3000</td>
<td>2608</td>
<td>Spoken (subtitles of movies)</td>
</tr>
<tr>
<td>EPC*</td>
<td>100 lines</td>
<td>2333</td>
<td>2134</td>
<td>Speeches (European Parliament)</td>
</tr>
<tr>
<td>UDHR*</td>
<td>30 articles</td>
<td>1753</td>
<td>1644</td>
<td>Written (legal)</td>
</tr>
<tr>
<td>BOG*</td>
<td>Chapters 1:3</td>
<td>2125</td>
<td>1918</td>
<td>Written (religious)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9211</td>
<td>8304</td>
<td></td>
</tr>
</tbody>
</table>

we do not by default split word types on hyphens and apostrophes, since they are relevant for the formation of compounds as well as contractions and clitics. The English and German original corpora are then manually transformed according to the following principles (see Appendix 1 for more detailed explanations).

4.2.1. Inflexions

Inflexions are neutralised in regular and irregular verbs (e.g. *decides/decide/decided → decide, sings/sang/sung → sing*) and nouns (e.g. *noses → nose, children → child, Johanne's →Johanne*) in English. Note that we include the 's genitive as nominal inflexion here, but we do not include -ing forms that are used as adjectives (flaming sword) or nouns (the teaching of). These are categorised as derivational suffixes. In German, inflexion is more extensive in the sense that there are suffixes that also have to be removed from adjectives, articles and demonstratives (e.g. *verdammt → verdammt, dem/den/des → der, dieser/diese/ dieses → dies*).

4.2.2. Derivation

There is a whole range of Germanic and Latin prefixes and suffixes that are considered derivational in English (e.g. *in-alien-able → alien, hope-ful-ly → hope, childhood → child*). We include nominalising -ing as in *mewling thing → mewl thing,* and *teaching of → teach of.* Note that derivation and inflexion can overlap so that removing derivational suffixes renders non-existent words (e.g. *realised → reald*). For German the picture is again a bit more complicated since multiple derivational affixes are commonly attached to the same root (e.g. *Anerkennung → kennen, Errungenschaften → ringen*) and can overlap with compounding (e.g. *Dringlichkeitsdebatte → Dringensdebatte*) and inflectional morphology (e.g. *abgeändert → ändert*).

4.2.3. Compounds

Different parts of speech can be compounded (e.g. noun-noun, adjective-noun, preposition-noun, among others). We split these back into two separate word types (e.g. *daytime → day time, downstairs → down stairs, gentlemen → gentle men*). However, we do not ‘de-compound’ proper names such as Hellfish. Similar principles apply to German (e.g. *Arbeitsschutzregelungen → Arbeit schutz regelungen, kräuterstinkender →kräuter stinkender*).

4.2.4. Contractions and clitics

Since with the OSC we include spoken language, there are a range of contractions and clitics to be found in both the English (e.g. *you’ve → you have, you’re → you are, I’ll → I will, won’t → will not, parliament’s → parliament*+) and German (geht’s → geht es, rührt’s → rührt es, dir’s → dir es, beim → bei dem, ins → in das).
For each language we separately neutralise inflexions, derivations, compounds and contractions/clitics as outlined above and compare the resulting word frequency distributions with the original ones.

4.3. Results

4.3.1. English

The result for removing inflexions and derivations in English can be seen in Figure 2. The NFD between the original corpus and the lemmatised one is 0.072. This means that removing inflexions causes a token frequency change that amounts to 7.2% of the overall number of tokens in both distributions. The NFD for the original corpus and the corpus with removed derivational morphology is exactly six times smaller (0.012 or 1.2% change). The upper panels of Figure 2 further illustrate this difference. It is mainly due to the impact that neutralisation of inflexions has in the high frequency range of the distribution, while removal of derivational morphology does not have this impact. Towards the low frequencies the differences are similar.

Consider the following example to see why this happens. The high frequency lemma go is represented in different word types with respective frequencies in our original text (go 10, going 6, went 3, gone 2, goes 1, goeth 1). If we lemmatise these word types to the lemma go, we collapse the whole distribution of different
frequencies into a single frequency: 23. In contrast, the words that are modified by derivational morphology are rather in the middle and low frequency range and there is only a fairly limited number of different derivational affixes that apply to the same word (e.g. hope 5, hopefully 1). Hence, changing hopefully to hope affects the distribution only minimally.

The token frequency differences in distributions with and without compounds as well as with and without contractions/clitics can be seen in Figure 3. It is remarkable that in our English corpus contractions and clitics change the frequencies more strongly than compounds or derivational morphology. In fact, for the English corpus derivations have the least impact on the frequency distribution. The order in terms of NFD is: inflexions 7.2%, contractions/clitics 2%, compounds 1.3%, and derivations 1.2%. Note, however, that the differences between contractions/clitics, compounds and derivations are minor and might change for different combinations of text types.

4.3.2. German

The results for the German corpus are somewhat different. The NFD order is: inflexions 10.9%, derivations 4.8%, compounds 2.1%, and contractions/clitics 1.5% (see Figures 4 and 5). The qualitative asymmetry between inflexions and derivations is still given, though in German derivations have a stronger impact on frequency distributions than in English and seem overall more productive than compounds and contractions/clitics.
Figure 4. Frequency differences in German illustrated for the removal of inflectional marking (left panel) and the removal of derivational marking (right panel). Original distributions are represented by grey triangles, changed distributions by black dots. Frequency differences per rank (non log-transformed) and NFD values are given in the upper panels.

Figure 5. Frequency differences in German illustrated for the splitting of compounds (left panel) and the splitting of clitics and contractions (right panel). Original distributions are represented by grey triangles, changed distributions by black dots. Frequency differences per rank (non log-transformed) and NFD values are given in the upper panels.
5. Analysis 2: The NFD as a cross-linguistic inflexion index

In Analysis 1 inflectional marking emerged as a predominant factor changing frequency distributions. However, the NFD variation for inflectional marking between English and German already suggests that the relative impact on frequency distributions is likely to differ across languages. In fact, the idea that the degree of inflexion of a language is reflected in the distribution of word types goes back to Zipf (1932, 1949), and re-appears (among others) in Ha, Stewart, Hanna, and Smith (2006), as well as Popescu et al. (2009), and Popescu, Altmann, and Köhler (2010). In the following analysis we further quantify these cross-linguistic differences. We use state-of-the-art lemmatisation tools to automatically remove inflectional marking in parallel corpora across 19 languages. This allows us to calculate the NFD between un-lemmatised (i.e. original) and lemmatised corpora as a frequency based measure of inflectional productivity, i.e. a cross-linguistic ‘inflexion index’. We will henceforth denote this specific kind of normalised frequency difference between lemmatised and un-lemmatised texts as NFD_lem.

5.1. Materials

We compile parallel corpora by using the UDHR and the Parallel Bible Corpus (PBC, Mayer & Cysouw, 2014) for each language. The range of texts is limited here by the set of languages for which lemmatisation is possible. If we want to exploit this set of languages fully, then we have to restrict the parallel corpora to the UDHR and the PBC. Overall, we arrive at parallel corpora of 12,000–17,000 tokens for 19 different languages (see Table 2 for details).

5.2. Methods

The splitting of character strings into word types is implemented by the function `strsplit()` in R (R Core Team, 2013; see also Gries, 2009). Note that this string splitting method yields clitics and contractions marked by apostrophes as separate word types, i.e. ‘he’ll, it’s and John’s are split to he ll, it s and John s respectively. Likewise, compounds connected by hyphens are split into separate word types.

The word types are then lemmatised using the BTagger (Gesmundo & Samardžić, 2012) and TreeTagger (Schmid, 1994, 1995). Both the BTagger and the TreeTagger will first associate the respective word type with a part-of-speech tag (POS tag) and then derive the most likely lemma. For example, for the English word type `rights` the BTagger outputs: `rights, Nc, right`. This is the original word type, the POS tag for `common noun`, and the respective lemma.

Automatic processing results in a number of errors, which can influence the observed differences between original and lemmatised texts. The number and the type of errors depend on the lemmatisation approach and on the level
of difficulty. Both taggers are based on statistical models trained on samples of manually lemmatised text. They are both able to provide high accuracy on words already seen in the training set (close to 100%). The words that are not seen in the training set are harder for both taggers and can be expected to result in more errors. Table 2 shows the percentage of word types unknown for each text and tagger. Using the BTagger with our parallel texts yields more unknown words than for the TreeTagger on average.

Note, however, that this does not necessarily mean that the BTagger will make more errors. Due to its good generalising capacities (Gesmundo & Samardžić, 2012), the BTagger obtains a relatively good performance on unknown words as well, whereas the TreeTagger will just output the original word type as lemma for any unknown word. Despite these differences, the overall effect of errors on the NFD_lem estimation is expected to be similar. Both taggers will transform fewer word types to lemmas than they actually should. In consequence, there will be less of a difference between lemmatised and un-lemmatised frequency distributions than there should be, and we will slightly underestimate the NFD_lem.

Also, for both taggers there are generally more unknown words in languages with many inflectional categories. Note, for example, that the percentage of unknown words is higher for Polish than for English for both taggers. We thus

<table>
<thead>
<tr>
<th>Language</th>
<th>ISO</th>
<th>Tagger</th>
<th>No. Tokens</th>
<th>Unknown*</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgarian</td>
<td>bul</td>
<td>TreeTagger</td>
<td>13,993</td>
<td>497</td>
<td>3.6</td>
</tr>
<tr>
<td>Czech</td>
<td>ces</td>
<td>BTagger</td>
<td>12,020</td>
<td>3068</td>
<td>25</td>
</tr>
<tr>
<td>Dutch</td>
<td>nld</td>
<td>TreeTagger</td>
<td>16,732</td>
<td>1089</td>
<td>6.5</td>
</tr>
<tr>
<td>English</td>
<td>eng</td>
<td>BTagger</td>
<td>16,781</td>
<td>2140</td>
<td>13</td>
</tr>
<tr>
<td>English</td>
<td>eng</td>
<td>TreeTagger</td>
<td>16,781</td>
<td>486</td>
<td>2.9</td>
</tr>
<tr>
<td>Estonian</td>
<td>est</td>
<td>BTagger</td>
<td>12,807</td>
<td>3116</td>
<td>24</td>
</tr>
<tr>
<td>Estonian</td>
<td>est</td>
<td>TreeTagger</td>
<td>12,807</td>
<td>1621</td>
<td>12.7</td>
</tr>
<tr>
<td>Finnish</td>
<td>fin</td>
<td>TreeTagger</td>
<td>11,841</td>
<td>1130</td>
<td>9.5</td>
</tr>
<tr>
<td>French</td>
<td>fra</td>
<td>TreeTagger</td>
<td>17,682</td>
<td>983</td>
<td>5.6</td>
</tr>
<tr>
<td>German</td>
<td>deu</td>
<td>TreeTagger</td>
<td>15,732</td>
<td>911</td>
<td>5.8</td>
</tr>
<tr>
<td>Hungarian</td>
<td>hun</td>
<td>BTagger</td>
<td>12,491</td>
<td>3694</td>
<td>30</td>
</tr>
<tr>
<td>Italian</td>
<td>ita</td>
<td>TreeTagger</td>
<td>15,314</td>
<td>888</td>
<td>5.8</td>
</tr>
<tr>
<td>Latin</td>
<td>lat</td>
<td>TreeTagger</td>
<td>11,427</td>
<td>266</td>
<td>2.3</td>
</tr>
<tr>
<td>Macedonian</td>
<td>mkd</td>
<td>BTagger</td>
<td>15,033</td>
<td>3370</td>
<td>22</td>
</tr>
<tr>
<td>Polish</td>
<td>pol</td>
<td>BTagger</td>
<td>13,188</td>
<td>4026</td>
<td>30</td>
</tr>
<tr>
<td>Polish</td>
<td>pol</td>
<td>TreeTagger</td>
<td>13,188</td>
<td>1670</td>
<td>12.7</td>
</tr>
<tr>
<td>Romanian</td>
<td>ron</td>
<td>BTagger</td>
<td>16,278</td>
<td>3766</td>
<td>23</td>
</tr>
<tr>
<td>Russian</td>
<td>rus</td>
<td>TreeTagger</td>
<td>12,152</td>
<td>957</td>
<td>7.9</td>
</tr>
<tr>
<td>Slovak</td>
<td>slo</td>
<td>TreeTagger</td>
<td>11,700</td>
<td>304</td>
<td>2.6</td>
</tr>
<tr>
<td>Slovene</td>
<td>slov</td>
<td>BTagger</td>
<td>13,075</td>
<td>2847</td>
<td>22</td>
</tr>
<tr>
<td>Spanish</td>
<td>spa</td>
<td>TreeTagger</td>
<td>15,581</td>
<td>907</td>
<td>5.8</td>
</tr>
<tr>
<td>Swahili</td>
<td>swh</td>
<td>TreeTagger</td>
<td>12,281</td>
<td>638</td>
<td>5.2</td>
</tr>
</tbody>
</table>

*Numbers and percentages of word tokens unknown to the tagger.

Table 2. Information on languages, ISO codes, the tagger used, number of tokens per parallel corpus, number of unknown tokens, and the percentage of unknown tokens for Analysis 2.
expect that our NFD_{lem} estimations are somewhat less reliable for the languages with abundant inflexion.

In sum, we can expect real NFD_{lem} values to be closest to the estimated values in languages such as English, and to be slightly higher than estimated in languages such as Polish.

A specific problem with the TreeTagger is that POS tagging and lemmatisation for individual languages is based on different treebanks and hence different lemma annotations. For example, for the Estonian word type inimõiguste ‘of human rights’ (GEN.PL) the TreeTagger will output inim_õigus+te as lemma. The underscore indicates compounding, and the + te indicates the genitive plural marker. However, the actual lemma we want to arrive at is inimõigus ‘human right’ (the BTagger outputs exactly this lemma). In such cases we have to do post-processing of the TreeTagger output to remove the symbols that are not part of the actual lemma.

Note, also, that the TreeTagger can exhibit somewhat unusual behaviour with pronouns. For example, in Spanish it lemmatises all articles (el, la, lo, los, etc.) to the masculine form el, which as a consequence accumulates a very high frequency (see first rank in the middle panel of Figure 6).

5.3. Results

5.3.1. Cross-linguistic comparison of NFD_{lem} values

In Figure 6 we choose three languages (English, Spanish, Finnish) to represent the range of NFD_{lem} values we find. English has the lowest NFD_{lem} value (5.2%). Note that the value for manual removal of inflexion in Analysis 1 was higher (7.2%). We will get back to this difference in Section 6. Spanish is in the middle range (12.2%) and Finnish has the highest value of the 19 languages (19.7%).

Figure 6. Changes of frequency distributions between un-lemmatised (grey triangles) and lemmatised (black dots) texts. English, Spanish and Finnish are chosen to represent the range of the original 19 languages.
Interestingly, despite these quantitative differences the patterns of change are similar across languages. Namely, lemmatisation universally affects the high frequency ranks and shortens the tail of low frequency word types. Again, this illustrates that inflectional marking systematically creates low frequent word types.

The full range of \(\text{NFD}_{\text{lem}} \) values can be seen in Figure 7. The bulk of languages falls within the middle range from 10–15%, relatively few languages fall below 10% and even fewer above 15%. Hence, languages seem to be approximately normally distributed around an inflectional productivity of 12.5% (measured in \(\text{NFD}_{\text{lem}} \)) with a slight skew towards having rather less than more.

Note, also, that for the three languages for which we can use both the BTagger and the TreeTagger the values are fairly similar (English: 5.2% and 5.4%, Estonian: 14.8% and 15.8%, Polish: 11.6% and 12.9%). This is reassuring, since it suggests that differences in \(\text{NFD}_{\text{lem}} \) are not strongly driven by idiosyncrasies of the taggers.

Another, conceptually somewhat different, question is how much of the variance in NFD values across different languages is due to differences in inflectional marking. While the \(\text{NFD}_{\text{lem}} \) values reflect how much token frequencies differ between un-lemmatised and lemmatised distributions of the same language, here we want to know how much of the difference in un-lemmatised distributions across different languages can be attributed to differences in

Figure 7. \(\text{NFD}_{\text{lem}} \) as an inflexion index across 19 languages. The x-axis represents languages with respective ISO 639–3 codes. The y-axis represents the \(\text{NFD}_{\text{lem}} \) between un-lemmatised and lemmatised versions of the UDHR and PBC parallel corpora. The colours of bars indicate whether the texts were lemmatised using the BTagger (black) or TreeTagger (grey). Note that for three languages (English, Polish, Estonian) both options are available.
inflectional marking, i.e. which proportion of the variation in cross-linguistic NFD values before lemmatisation is covered by variance in NFD values after lemmatisation.

5.3.2. Calculating the effect of lemmatisation
To assess how much NFD values are reduced by lemmatisation, we can create two matrices of pairwise comparisons: one matrix with NFD values of languages before lemmatisation, and one matrix with NFD values after lemmatisation. This way we can calculate the mean NFD for the original (un-lemmatised) distributions as 0.14 (SD = 0.08), and the mean NFD for the lemmatised distributions as 0.12 (SD = 0.05). Finally, the proportion of NFD variance of lemma distributions over variance in the original distributions is 48.8%. In other words, about 50% of the NFD variance that we find across the original word frequency distributions of 19 languages is due to variance introduced by inflectional marking. Hence, the other 50% will be due to derivational morphology, compounds, contractions/clitics and differences in the base vocabulary.

6. Analysis 3: The effect of text size on the \(\text{NFD}_{\text{lem}}\)
In any corpus analysis relating to morphological productivity it is important to control for corpus size. This has been pointed out most clearly in quantitative studies on vocabulary growth (Baayen, 1992, 1994, 2001, p. 2), which suggest that using relatively small texts of the kind we used in the preceding analyses might systematically underestimate the actual \(\text{NFD}_{\text{lem}}\). In the following we test the behaviour of the \(\text{NFD}_{\text{lem}}\) with growing text size.

6.1. Materials
One of the biggest parallel corpora in terms of number of tokens is currently the European Parliament Corpus (EPC; Koehn, 2005). It contains several million words of European Parliament discussions in 20 European languages. However, due to the fact that lemmatisation and the sampling methods we use are relatively time consuming, we use only the first 1 million words per language instead of the full corpus.

6.2. Methods
Matching the languages in the EPC with the languages of the TreeTagger yields a sample of 10 languages for which lemmatisation is possible. As in Analysis 2, we split character strings into word types by using the function \textit{strsplit()} in \(R\) (R Core Team, 2013; see also Gries, 2009). Word types are then lemmatised by the TreeTagger.
In order to estimate (a) the true NFD\textsubscript{lem} value per language, and (b) its relation to sample size, we use three methods of sampling:

1. **Continuous sampling**: We take increasingly larger chunks from the first 100 K words of each corpus (i.e. 10 word tokens, 11 word tokens, … , 100 K word tokens from the beginning). For these chunks we calculate the NFD\textsubscript{lem} value between frequency distributions of words and lemmas (see Figure 8 continuous). Note that the Europarl corpus is essentially a concatenation of speeches. Hence, sampling from the beginning can bias the early NFD\textsubscript{lem} values in a specific direction and it will take some time to converge on the actual value.

2. **Matched random sampling**: To overcome the potential bias of continuous sampling we use random sampling. Namely, we randomly sample increasingly larger chunks from the original 1 M corpora (e.g. randomly sampling 10 word tokens, 11 word tokens, … 100,000 word tokens). Also, word types and lemmas are matched (i.e. each word type would be paired with its lemma). The results of this method are represented in Figure 8 as random (matched).

Figure 8. Relationship between number of tokens (x-axis) and NFD\textsubscript{lem} (y-axis) for 10 languages and three conditions of sampling. The curves are NFD\textsubscript{lem} values smoothed with a general additive model (gam). ISO 639–3 codes translate as: fin (Finnish), pol (Polish), slk (Slovak), est (Estonian), deu (German), spa (Spanish), ita (Italian), fra (French), eng (English), nld (Dutch). We used 1 M word tokens in the original analyses, but we reduced the size to 100 K, since the values already converge at around 50 K at the most. The vertical dashed lines represent 15 K tokens, which corresponds roughly to the average text size we had in Analysis 2.
Dissociated random sampling: Using matched word types and lemmas could potentially introduce a further bias. Hence, in our third sampling method we use the same method as in (2), except that word types and lemmas are not matched (see *random (dissociated)* in Figure 8). Since taking two random samples (one for word types and one for lemmas) at each step would quickly become computationally inefficient, we start by shuffling the word types and lemmas in the output file of the TreeTagger so that the word types are not paired with their corresponding lemmas.

6.3. Results

Figure 8 illustrates how the average NFD_{lem} changes with the number of tokens for parallel texts of 10 languages in the EPC, and for the three different sampling conditions. The vertical dashed lines denote 15 K tokens, i.e. roughly the average size of texts we had in the analysis of NFD_{lem} values across 19 languages (Analysis 2).

It is clear from Figure 8 that for some strongly inflected languages like Finnish (fin), Polish (pol), Slovak (slk) and Estonian (est) we might slightly underestimate the actual NFD_{lem} values with a text size of 15 K and smaller (also depending on the sampling method).

However, even for these languages the value converges at around 50 K. Also, at this text size the sampling method does not play a role anymore. Overall, this is a surprising and encouraging result. It goes to show that the true NFD_{lem} value (of a specific parallel corpus and language) can be estimated by using even relatively small subsamples of it.

Note that the NFD_{lem} values we end up with for parallel corpora in the analysis on inflectional marking across 19 languages (Analysis 2) and the NFD_{lem} values of the current analyses might be confounded slightly by the specific register of these corpora (see Table 3). For example, if we take the values of Analysis 2 and compare them to the converged values of condition 3 of the current analysis (presumably the least biased sampling method), we find some

<table>
<thead>
<tr>
<th>ISO</th>
<th>Language</th>
<th>Analysis 2</th>
<th>Analysis 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>eng</td>
<td>English</td>
<td>0.052</td>
<td>0.057</td>
</tr>
<tr>
<td>nld</td>
<td>Dutch</td>
<td>0.064</td>
<td>0.045</td>
</tr>
<tr>
<td>fra</td>
<td>French</td>
<td>0.089</td>
<td>0.084</td>
</tr>
<tr>
<td>ita</td>
<td>Italian</td>
<td>0.104</td>
<td>0.091</td>
</tr>
<tr>
<td>spa</td>
<td>Spanish</td>
<td>0.122</td>
<td>0.111</td>
</tr>
<tr>
<td>deu</td>
<td>German</td>
<td>0.123</td>
<td>0.108</td>
</tr>
<tr>
<td>pol</td>
<td>Polish</td>
<td>0.129</td>
<td>0.158</td>
</tr>
<tr>
<td>slk</td>
<td>Slovak</td>
<td>0.145</td>
<td>0.162</td>
</tr>
<tr>
<td>est</td>
<td>Estonian</td>
<td>0.158</td>
<td>0.156</td>
</tr>
<tr>
<td>fin</td>
<td>Finnish</td>
<td>0.197</td>
<td>0.234</td>
</tr>
</tbody>
</table>
minor discrepancies for close languages like English and Dutch (their values are swapped). This is also most likely the reason why we end up with a somewhat higher value for English in Analysis 1 (7.2%) compared to Analysis 2 (5.2%).

However, the overall Spearman correlation between values of Analyses 2 and 3 (condition 3) is strong ($r_s = 0.94, p < 0.0001$), suggesting that neither using different parallel corpora (UDHR and BOG in Analysis 2, and EPC in Analysis 3) nor using different sampling methods are major confounds for the estimation of NFD_{lem} per language.

7. Analysis 4: The impact of lemmatization on different parts of speech

Besides using the NFD to measure differences in word frequency distributions for different morphological markers (Analysis 1), as an inflexion index across different languages (Analysis 2), and for different text sizes (Analysis 3), we might also want to look at how changes of morphology interact with different parts of speech (POS), e.g. inflectional marking for nouns, verbs (content words) compared to the distributions of prepositions (function words).

7.1. Materials

We use the same materials here as in Analysis 2. Namely, a combination of the full UDHR and the full PBC as text samples.

7.2. Methods

Again, the tokenisation, tagging and lemmatisation procedures are the same as for Analysis 2, except that here we use the BTagger only. This is because the TreeTagger uses different sets of POS tags, which makes it harder to meaningfully compare parts of speech across different languages. The BTagger uses a (largely) consistent set of POS tags taken from the Multext-East morphosyntactic definitions (MSD) (see footnote 3). Remember from Section 5.2 that for the English word type *rights* the BTagger outputs: *rights, Nc, right*. This is the original word type, the POS tag for *common noun*, and the respective lemma. Similarly, for the Estonian equivalent *õiguste* it outputs: *õiguste, Nc, õigus*. Using these outputs we can create frequency distributions of words and lemmas per POS tag.

For example, Table 4 gives the first ten ranks of distributions for word types and lemmas of English main verbs (Vm) only. Based on this filtering by POS tags we can plot distributions and calculate NFD_{lem} values for common nouns, main verbs and prepositions separately. As a workable example, we take English and Estonian to represent low-inflexion and high-inflexion languages respectively.
For these two we compare differences in the distributions of nouns, verbs and prepositions before and after lemmatisation.

7.3. Results

Figures 9 and 10 illustrate how word frequency distributions differ between different parts of speech in English and Estonian, as well as how much impact inflectional marking has on word types of each part of speech.

Generally speaking, the un-lemmatised distributions of nouns and verbs look fairly similar within the same language, whereas prepositions have a ‘steeper’ distribution occupying the high frequency range – as we would expect for function words. Note, however, that there is an interesting asymmetry between distributions of prepositions between the two languages with English having more and higher frequent prepositions than Estonian. Moreover, lemmatisation affects verbs more strongly than nouns in both languages. In fact, this asymmetry in inflectional marking is even stronger for English than for Estonian, as reflected in Table 5.

Namely, the NFD_{lem} value for verbs in English is roughly four times higher than the value for nouns, whereas in Estonian it is only twice as high.
Overall, this analysis illustrates that there are interactions and potential trade-offs between parts of speech and inflectional marking across languages, which can be quantified and disentangled by using the NFD as a measure.

8. Discussion

In Analysis 1 we calculated NFDs for four different kinds of word type formation patterns (inflexion, derivation, compounding and contraction/clitics) and two different languages (English and German). Overall, the results of Analysis 1 can be interpreted in two ways: either with a focus on the relative importance of different morphological marking strategies within the same language, or as a comparison of the same marking strategies across the two languages.

With regards to the former it can be said that inflectional marking has the strongest impact on frequency distributions in both English and German. Removing inflectional markers has both an impact on the high frequency ranks and the low frequency ranks, since the frequencies of different word forms add up to the frequency of the respective lemma. In other words, having inflectional marking in a language systematically creates low frequency word types and ‘pushes’ the overall word frequency distribution towards having a longer tail (as predicted for example by Baayen, 2001, pp. 155–160). Contractions and clitics have a qualitatively similar effect.

In contrast, the impact is different for derivational morphology in the sense that (a) there is almost no change in the high frequency ranks, and (b) the overall change in token frequencies is smaller. This seems linked with Moscoso del Prado Martín et al.’s (2004, p. 5) observation that for predicting lexical decision

Figure 10. Distributions of lemmatised (black dots) and un-lemmatised (grey triangles) word types by parts of speech (nouns, prepositions and verbs) in Estonian.

<table>
<thead>
<tr>
<th>Language</th>
<th>Nouns</th>
<th>Verbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>0.046</td>
<td>0.185</td>
</tr>
<tr>
<td>Estonian</td>
<td>0.159</td>
<td>0.304</td>
</tr>
</tbody>
</table>
latencies (i.e. processing difficulty) token frequencies are more important for word types belonging to inflectional paradigms than for word types belonging to derivational paradigms. Take the example of different inflectional variants of *go* (*go* 10, *going* 6, *went* 3, *gone* 2, *goes* 1, *goeth* 1) and derivational variants of *hope* (*hope* 5, *hopefully* 1) from above. Just taking the token frequency of *go* as a predictor for reaction times would grossly underestimate the frequency ‘support’ given from other inflectional variants (10 versus 23), whereas for *hope* this would barely make a difference (5 versus 6).

If it holds true that frequencies of words are directly related to their learnability and processing difficulty, then these results suggest that inflectional marking might have a systematically higher ‘cognitive cost’ than derivational morphology, since it systematically creates lower frequency items. Thus, the NFD might emerge as an objective, quantitative way of measuring the learnability and processing difficulty of morphology across languages.

For compounds we find a pattern that is similar to the one for derivation. Splitting compounds affects mainly the middle and low frequency ranks towards the tail of the distribution, and has overall only a small effect on the distribution.

Comparing the same marking strategies across the two languages we find that inflexion and derivation are more productive in German than in English – as we would expect – whereas compounding as well as contraction/cliticisation appear to have similar productivity with slight deviations. This is somewhat surprising given that German is often referred to as a language taking compounding to its extremes. This perception might be caused by the fact that *in theory* almost any number of words can be compounded together in German. Take the example of the *Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz*, which translates into English as ‘the law for the delegation of monitoring beef labelling’. However, despite such extreme examples, we do not find strong evidence in our analysis that compounding is much more productive in German than English looking at the actual frequencies *in practice*. The actual normalised difference that the splitting of compounds causes in token frequencies of our corpus is 1.3% in English and 2.1% in German. If this result is replicated in further studies with bigger and more representative corpora, it might be taken as an example of how some extreme cases can bias our perception of the actual productivity of word formation patterns.

Analysis 2 then focused on a cross-linguistic analysis of inflectional morphology. This is partly motivated by the fact that inflectional morphology turned out to be the predominant factor changing frequency distributions in Analysis 1, and partly by the fact that automated tools to remove derivational affixes, compounds and contractions/clitics across different languages are not available at this point (to our knowledge).

Analysis 2 shows that the NFD can be used as a cross-linguistic, frequency-based inflexion index. It further illustrates that inflectional morphology ‘pushes’ word frequency distributions towards the low frequency tail. Importantly, this is
not an idiosyncrasy of specific languages, but a general property of inflectional marking. Moreover, there seems to be a ‘natural’ tendency for languages to range around an NFD_{lem} of 10–15%, with a slight skew towards rather having a lower value (<10%) than a higher one (>15%). The ‘outliers’ might be the synchronic outcome of more ‘extreme’ histories of language change and learning pressures, such as language contact versus relative isolation (Bentz & Winter, 2012, 2013; Bentz et al., 2015; Dale & Lupyan, 2012; Lupyan & Dale, 2010; McWhorter, 2002; Trudgill, 2011; Wray & Grace, 2007).

The methods and data used in Analysis 2 can also be used to measure how much of the NFD variance we find across different languages is due to differences in the productivity of inflectional marking. This value was estimated to around 50%. Hence, inflectional marking can be said to have a strong cross-linguistic impact on word frequency distributions. This is an important result for studies that try to explain cross-linguistic differences in lexical diversity by learning pressures (e.g. Bentz et al., 2015). The other half of the variance will be divided between other word formation strategies and differences in the range of word types in the base vocabulary. To further disentangle these we would need computational tools to automatically remove derivational morphology, compounds and contractions/clitics from a set of languages.

Analysis 3 systematically tested the dependence of the inflexion index (NFD_{lem}) on the number of tokens. It turned out that for most languages small text sizes of around 10–15 K are enough to get a good approximation, though for strongly inflected languages this number might go up to 50 K or more. This analysis also suggested that the register of a text (e.g. European Parliament discussions versus legal texts and Bible translations) might be a slight confound. Of course, in the optimal case we would be able to compile parallel corpora of around 100 K across a wide range of registers to closely approximate the actual inflexion indices representative for whole languages. Hence, advancing quantitative cross-linguistic comparison is a matter of building larger parallel corpora and elaborating computational tools to process them.

Finally, Analysis 4 added another level of detail by looking at word frequency distributions for different parts of speech in English and Estonian. As we would expect, closed class function words (e.g. prepositions) have much steeper distributions (fewer word types and higher token frequencies) than content words (e.g. nouns and verbs) in both languages. In fact, the idea that overall word frequency distributions are composed of different component distributions according to parts of speech goes back to at least Yule (1944, pp. 19–21). Baayen (2001, pp. 155–160) gives a mathematical account of how to model these components based on mixture models. However, only now are the computational tools and corpora becoming available to empirically estimate the exact values and shapes of component distributions.

Moreover, analysing parts of speech separately suggests that there might be a measurable trade-off between preposition-heavy encoding strategies
C. BENTZ ET AL.

(e.g. English), on one hand, and nominal inflectional marking strategies (e.g. Estonian), on the other hand. Based on the NFDlem results we can conjecture that the nominal encoding strategy requires a wide range of low-frequent nominal word types, whereas the preposition-heavy strategy relies on a small range of high-frequent word types instead. Again, the occurrence of these differing strategies might be linked to specific histories of language learning and the respective processing pressures. Eventually, measuring such trade-offs can help to disentangle the pathways along which different linguistic features change and interact.

In the following, we want to address two more general points regarding the NFD. Namely, its relation to other lexical diversity measures, and its implications for a language typology based on corpus data rather than expert categorisation.

8.1. Comparison to lexical diversity measures

There is a wide range of lexical diversity (LD) measures in quantitative and applied linguistics (see for example Baayen, 2001; Jarvis, 2002; McCarthy & Jarvis, 2007, 2010, Mitchell, 2015; Tweedie & Baayen, 1998 for an overview, and Michalke, 2014 for an R implementation). In fact, Mitchell (2015) reports a total of 50 different models to describe type-token ratios. In principle, any of these LD measures could be used to calculate the lexical diversity difference (ΔLD) between two word frequency distributions instead – or on top of – the NFD. Table 6 gives values for a range of LD measures (mainly the ones represented in

<table>
<thead>
<tr>
<th>Measure</th>
<th>Non-uniform</th>
<th>Uniform</th>
<th>ΔLD</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZM α</td>
<td>8.67</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>ZM β</td>
<td>12.45</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>HD-D</td>
<td>7.04</td>
<td>9.97</td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>Shannon H</td>
<td>2.27</td>
<td>3.32</td>
<td>1.05</td>
<td>Non-parametric</td>
</tr>
<tr>
<td>Yule’s K</td>
<td>2680</td>
<td>900</td>
<td>1780</td>
<td></td>
</tr>
<tr>
<td>TTR</td>
<td>0.10</td>
<td>0.10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSTTR</td>
<td>0.17</td>
<td>0.10</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>MATTR</td>
<td>0.16</td>
<td>0.19</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Herdan’s C</td>
<td>0.50</td>
<td>0.50</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Guiraud’s R</td>
<td>1.00</td>
<td>1.00</td>
<td>0</td>
<td>Non-parametric</td>
</tr>
<tr>
<td>CTRR</td>
<td>0.71</td>
<td>0.71</td>
<td>0</td>
<td>(TTR-based)</td>
</tr>
<tr>
<td>Dugast’s U</td>
<td>4.00</td>
<td>4.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Summer’s S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Maas index</td>
<td>0.50</td>
<td>0.50</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MTLD</td>
<td>2.20</td>
<td>2.04</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

*H: Shannon entropy over word types; ZM: Zipf-Mandelbrot parameters α and β; TTR: type-token-ratio; MSTTR: Mean segmental type-token ratio; MATTR: Moving-average type-token ratio; CTR: Carroll’s corrected TTR; Dugast’s U: Dugast’s uber index; HD-D: Idealised version of vocd-D; MTLD: Measure of textual lexical diversity.
the koRpus package by Michalke, 2014) applied to the uniform and non-uniform distributions (F^A, F^B) used earlier to demonstrate the NFD measure in Section 3.

The advantage of LD measures over the NFD is that they can be applied to a single distribution rather than requiring a pairwise comparison of distributions. This is convenient when comparing lexical diversities across many languages and across different time periods (e.g. Bentz et al., 2014, 2015; Koplenig, 2015b). However, there are also disadvantages.

Parametric measures have the disadvantage that they require curve fitting by assuming an underlying model like the Zipf-Mandelbrot model (Mandelbrot, 1953). Since it is generally hard to determine the right balance between under-fitting by using the most parsimonious model and over-fitting by using strongly modified models, the results of such curve fitting procedures are an easy target for criticism.

On the other hand, most non-parametric models based on TTR will not indicate the difference between the uniform and non-uniform distribution at all, or give it only minor recognition (except for MTLD). This is because they are purely based on the ratio of word types to word tokens, which is actually the same for the uniform and non-uniform distributions in our example. Hence, TTR-based measures tend to be insensitive to the exact distribution of token frequencies. As Analysis 1, 2, and 4 show this is a shortcoming since changes in grammatical marking can have subtle effects on the exact distributions of word types and tokens.

To capture these differences we are left with Shannon H over word types, ZM parameters, MATTR, MSTTR, Yule’s K, HD-D, and MTLD (and potentially others that we have not tested). At least Shannon H and ZM parameters have been applied in earlier cross-linguistic and diachronic studies to measure

![Figure 11. Correlation between NFD_{lem} values (y-axis) and entropy difference (x-axis) for data from Analysis 2. Dots represent languages, different colours indicate lemmatisation by either BTagger (black) or TreeTagger (grey). The dashed lines are linear models with confidence intervals.](image-url)
lexical diversities (e.g. Bentz et al., 2014, 2015; Koplenig, 2015b). Generally, difference indices based on these LD measures are expected to strongly correlate with NFDs. For example, for the cross-linguistic inflexion index in Analysis 2 Figure 11 illustrates a strong Pearson correlation ($r = 0.96, p < 0.0001$) between the difference in Shannon H and the NFD_{lem}.

Thus, in practice these LD measures might be just as suitable to measure differences between distributions as the NFD. However, it is not clear if they exhibit the properties of stable convergence even for small text sizes that we have illustrated in Analysis 4 for the NFD_{lem}. It is beyond the scope of this paper to test the behaviour of all of these measures for growing text sizes as we did for the NFD_{lem}.

In any case, what speaks for the NFD is first that it is a non-parametric measure, which does not require curve fitting by assuming an underlying model. This makes it less theory-dependent and immune to discussions surrounding the correct parametric model to be fitted. Second, it is sensitive to even minimal changes in the exact distribution of token frequencies over type frequencies, and can hence measure subtle differences at any level of detail (given the right corpora). Third, the NFD has a straightforward, intuitive and frequency-based interpretation. It is the percentage of token frequency differences per overall number of tokens. In contrast, interpreting differences in Shannon entropy (Shannon & Weaver 1949) or the Kullback-Leibler divergence (Kullback & Leibler, 1951; see Bochkarev et al., 2014 for an application) requires a thorough understanding of the mathematical underpinnings of information theory.

8.2. Toward a quantitative corpus typology

Our paper mainly focused on defining and testing the NFD as a measure, and applying it to assess what drives differences in word frequency distributions. However, we also would like to make a more general point here about the emerging field of quantitative typology.

In recent years, computational and statistical methods have found wider application in the area of linguistic typology. This is possible mainly through the development of large scale, cross-linguistic databases of language information such as the Ethnologue (Lewis, Simons, & Fenning, 2013), the World Atlas of Language Structures (WALS; Dryer & Haspelmath, 2013), the AUTOTYP database (Bickel & Nichols, 1999), the Glottolog (Hammarström, Forkel, Haspelmath, & Bank, 2015), and more recently the development of massive parallel corpora (Koehn, 2005; Mayer & Cysouw, 2014; Tiedemann, 2012). Take the WALS as an example. It contains 151 chapters with expert judgements on how to categorise languages with regards to a range of linguistic features. For example, chapter 49 (Iggesen, 2013) gives the ‘Number of Cases’ as a discrete ordering from ‘no morphological case’ to ‘10 or more cases’ for
261 languages. This can be seen as a valuable first impression of cross-linguistic case marking strategies.

However, it is only a very coarse-grained approximation for the actual usage of case markers. Bickel (2015) points out that we would need whole feature matrices of case markers according to the exact properties they have in a specific language. Also – above and beyond description – the productivity of case markers in languages can vary. For example, ranking German and Icelandic as having four cases (nominative, accusative, dative and genitive) is a fairly abstract, theory-driven categorisation, which conceals the fact that the overall frequencies of usage might be vastly different between the two languages. In fact, even within the same language a specific case marker might have a different productivity for different words. For example, the word *land* ‘country’ occurs five times in our German corpus used in Analysis 1, the genitive singular marked form *land-es* occurs four times. In contrast, the word *gott* ‘god’ occurs 55 times and the genitive singular form *gottes* still only four times. So, if we just take these numbers as our frequency distributions and calculate the NFDlem for these, we get 0.44 for the productivity of the genitive singular marker with *land* and only 0.07 for *gott*. Hence, the genitive singular marker is almost six times more productive for *land* than for *gott* (in our text sample). Of course, at this level of specificity our results will depend much more on the composition of corpora, and we will generally run into the problem of data sparsity. Again, these problems can only be overcome by compiling bigger, more balanced, and hence more representative parallel corpora.

Ultimately, we want to be able to measure the productivity of morphological markers – or any other linguistic structure – with any depth of specification from corpora directly. The application of POS tagging and lemmatisation tools in combination with quantitative measures such as the NFD are a first step in this direction. Hence, the NFD is a more realistic, empirical, and less theory-driven estimation of morphological productivity in particular, and a measure for the impact that any systematic manipulation of word types might have on frequency distributions more generally.

Of course, applying computational tools in typology does not entirely overcome our reliance on expert judgements and theoretical reasoning, since these are implemented in tools like the BTagger or TreeTagger. However, our analyses become more reducible, and the impact of our theory-driven decisions becomes more directly measureable. We think that a similar reasoning applies to other linguistic features such as phoneme inventories and word/constituent order.

9. Conclusions

We established here the Normalised Frequency Difference as a measure of the deviation between any two frequency distributions. This measure is widely applicable, relatively easy to interpret and – in its application as an inflexion
index — surprisingly robust to differences in corpus size and register. Our analyses show that it is interesting for two broad lines of linguistic research: (a) to estimate the impact that changes in word types have on the word frequency distribution of a specific language, (b) to assess the difference in impact of changes across languages. Though we have focused mainly on morphological marking strategies in this paper, the NFD can be used as a measure more generally, namely whenever we define a systematic way of changing word types that is reflected in their written form. Ultimately, we are aiming at making language typology more corpus-based, empirical and hence reproducible.

Notes

1. We made an \textit{R} package available for NFD calculation and plotting via \url{https://github.com/dimalik/nfd/}.

2. Note that we included the ’s genitive both under inflexion and clitics. Theoretically it should be considered a phrasal clitic, since it does not attach directly to nouns, but rather to noun phrases. However, in practice it is found mostly on nouns and might be perceived as noun inflexion by learners and speakers.

3. In the upper panels we log-transform the ranks of the distributions, but not the ΔFreq. This exaggerates the visual differences in frequencies somewhat.

4. The POS tags used in the BTagger are the first two letters of the Multext-East morphosyntactic definitions (MSD). See a full list here: \url{http://nl.ijs.si/ME/V4/msd/html/index.html}.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Christian Bentz was funded by the Arts and Humanities Research Council (UK), and Cambridge Assessment [grant number RG 69405]. At a later stage, he received funding from the DFG (German Research Foundation) grant “Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past” [grant number FOR 2237], and the ERC Advanced Grant EVOLAEMP [grant number 324246].

References

Koplenig, A. (2015a). The impact of lacking metadata for the measurement of cultural and linguistic change using the google ngram data sets – reconstructing the composition of the German corpus in times of WWII. *Digital Scholarship in the Humanities*. doi:10.1093/llc/fqv037

Appendix 1

Word types were manually changed according to the principles outlined for English and German below. In difficult cases the Longman Grammar (Biber, Johansson, Leech, Conrad, & Finegan, 1999) and the Duden Grammar (Fabricius-Hansen et al., 2009) were consulted for English and German respectively.

English

Inflection

- Verb forms that are marked for third person, past tense, progressive as well as gerunds and present participles (e.g. *is*, *was*, *were* → *be*; *suggests*, *suggested*, *suggesting* → *suggest*). Note that this does not include -ing forms that are used as adjectives (*flaming sword*) or nouns (*the teaching of*). These are categorised as derivational suffixes.
- Noun inflexions such as *s*-plurals and *’s* genitives as well as irregular forms (e.g. *Johann’s* → *Johann*).
- Personal pronouns that are remnants of the case system (e.g. *him*, *his* → *he*).
- Omissions resulting in apostrophes that are relevant for inflectional change are converted back to separate word types and lemmatized (e.g. *I’m* → *I be*; *didn’t* → *do not*).

Derivation

- prefix *en-* (e.g. *en-forced* → *forced*)
- prefix *dis-* (e.g. *dis-content* → *content*)
- prefix *out-* (e.g. *out-come* → *come*, *outrage* → *rage*)
- prefix *in-* (e.g. *in-alien-able* → *alien*)
- prefix *un-* (e.g. *un-known* → *known*, *un-animous* → *animous*)
- prefix *inter-* (e.g. *international* → *national*)
- prefix *non-* (e.g. *non-smoking* → *smoking*)
- Latin prefixes as in *re-port*, *trans-port* are not removed, only in the case where removal of a prefix leads to a word form that exists independently (e.g. *re-consider* → *consider*, *re-cover* → *cover*)
- suffix *-ly* (e.g. *mere-ly* → *mere*, *legal-ly* → *legal*)
- suffix *-hood* (e.g. *widowhood* → *widow*, *childhood* → *child*)
• suffix -ise (e.g. real-ise → real)
• suffix -ation (e.g. conversation → converse, information → inform, but not salvation since the Latin root is not used as independent word)
• suffix -al (e.g. norm-al, sex-ual, environment-al but not annual, general since the Latin root is not used as independent word)
• suffix -ity (e.g. community → commune, activity → active/act, but not dignity)
• suffix -fy (justify → just, but not verify)
• suffix -ful (e.g. peace-ful → peace, hope-ful-ly → hope)
• suffix -er (e.g. driv-er → drive, killer → kill)
• suffix -ment (e.g. develop-ment → develop)
• suffix -able (e.g. question-able → question)
• nominalising -ing as in mewling → mewl, teaching → teach, and derived adjectives (e.g. living thing → live thing)
• other-wise → other

Note: derivation and inflexion can overlap so that removing derivational suffixes renders non-existent words (e.g. realised → reald). Derivation can take place without change of surface forms (conversion, e.g. the telephone → to telephone).

Compounds (Biber et al., 1999)
• noun-noun combinations (e.g. daytime → day time, cellphone → cell phone, boyfriend → boy friend)
• proper names are not de-compounded (e.g. Hellfish)
• adjective-noun combinations (e.g. gentlemen → gentle men; note that multiannual is an exception, because multi serves as a productive prefix)
• preposition-noun combinations (e.g. downstairs → down stairs, anyway → any way; note that outcome is an exception, because out- is counted as derivational suffix)
• someone → some one, without → with out
• therefore → there fore
• myself → self, ourselves → our selves

Contraction and cliticisation
• you’ve → you have, you’re → you are
• I’ll → I will
• pig’s → pig s and pigs’ → pigs
• won’t → will not
• isn’t → is not

German

Inflexion
• inflected verb forms marked for person and tense, as well as gerunds and participles (e.g. bin, ist, war → sein, gehend → gehen, geschmuggelt → schmuggeln)
• noun morphology, such as plural and case marking (including Umlaut patterns) (e.g. Freiheiten → Freiheit, Gespenstern → Gespenster, Stürme → Sturm)
• the so-called Fugen-S as in Glaubensfreiheit is not removed since it is not considered productive (Fabricius-Hansen et al., 2009)
• pronouns marked for case: (e.g. mir, dir, ihr, ihm → ich, du, er, sie)
• adjectives marked for case, number and gender (e.g. verdammte → verdammt)
• articles marked for case and number (e.g. dem → der, den, des → der/das, der.PL → die)
• demonstratives marked for gender (e.g. dieser/diese/dieses → dies)
• adjectival gerunds and participles with gender, number and case marking
 (e.g. kräuterstinkend-er → kräuterstinkend, folgend-er → folgend, gefuerchtete →
 gefuerchtet)
• adjectives marked for comparison (größer → groß, besser → gut)
• combinations of prepositions with verbs that involve medial zu are considered as
 the outcome of derivation rather than inflexion (e.g. zurueckzukehren)
• Others: jeder/jede/jedes/jedem → jede, jener/jenem/jene → jene, andere/anderes/
 anderen → ander, keine/keiner/keines → kein, aller/alles/allein → alle

Derivation/Conversion (Fabricius-Hansen et al., 2009)
There are five different kinds of word formation in German that are considered here:

(1) derivation: one independent and one (or more) dependent parts (e.g. Un-
 glück, ver-gehen, Ge-bild-e)
(2) change of word class, can include morphological changes as well (e.g. fremd
 → Fremder, hart → härten)
(3) abbreviations (e.g. information→ info, not attested in our corpus)
(4) particle verbs (ab-aendern, ver-aendern, ein-sehen, auf-stehen)
(5) compounds: two independent parts (Vor-bild, Auf-wind, gelb-gruen):

Category (3) is irrelevant here since abbreviations of this kind are not attested in our
texts. Category (5) is considered under compounds. This leaves us with categories (1),
(2) and (4). For these categories we proceed as follows:
(1) remove derivational prefix or suffix if this yields a word in German (e.g. ver-
 gehen → gehen; leave affixes if removing them yields non-words, i.e. erstatten,
 abstatten → statten*). Also, inflectional morphology is left if possible (e.g. vergibt →
 geht)
More examples:
• ver-missen → missen, but not verletzen, vergessen since letzen* and gessen* are
 non-words
• ent-lang → lang
• er-klären → klären, er-lösen → lösen, er-kranken → kranken
• unter-brechen → brechen, but zurueck-bleiben not, since considered to be compound
• See-un-geheuer → Seegeheuer
• pein-lich → pein, wahrscheinlich → schein, unheimlich → heim, but not möglich,
 since mög* is not a word
(2) reduce to original word form (e.g. Ergebnis → geben, erhitzt → Hitze, offensichtlich
 → offensichtlich, namens → namen)
(4) remove particle as well as zu and ge (i.e. abzuaendern → aendern) if this yields
an independent word; leave morphology if possible (e.g. abgeändert → ändert, beant-
worteten → antworteten, but not erschiienenen → schienenen*)
More examples:
• zurück-zu-schicken → schicken

Often, more than one of the above categories can be relevant to the removal of deri-
vational morphology. For example Anerkennung → kennen involves (1), (2) and (4);
Errungenschaften → ringen involves (1) and (2).
Composition
• noun-noun compounds (e.g. Fischfabrik → Fisch fabrik)
• preposition-noun compounds (e.g. zurückgehen → zurück gehen)
• noun-adjective compounds (e.g. kräuterstinkender → kräuter stinkender)
• Not proper names like *Hellfish*
• removal of the *Fugen*-s (e.g. *Geschwindigkeitsmessung ➔ Geschwindigkeit messung*)
• multiple elements (e.g. *Arbeitsschutzregelungen ➔ Arbeit schutz regulungen*)

Contractions and clitics
• neuter pronoun *es* contracted to ’s (e.g. *geht’s ➔ geht es, rührt’s ➔ rührt es, dir’s ➔ dir es*)
• omissions and amalgamations ‘*Verschmelzungen*’ (e.g. *zum ➔ zu dem, zur ➔ zu der, im ➔ in dem, am ➔ an dem, beim ➔ bei dem, vom ➔ von dem, ins ➔ in das, ans ➔ an das, aufs ➔ auf das*) (Fabricius-Hansen et al., *2009*)