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PREFACE 

An influential line of thinking within evolutionary linguistics is that languages 

change in response to socioecological pressures, i.e. adapt to their environmental 

niches. Language complexity is a common parameter to test for such adaptation. 

It is, however, notoriously difficult to define and measure. Virtually every study 

of complexity uses its own operationalization and measure. This can be 

problematic if measures yield different conclusions, since there currently is little 

consensus about how measures themselves can be evaluated and compared.  

To overcome this, we organized this shared task on linguistic complexity. 

Shared tasks are widely used in computational linguistics, but this workshop, to 

our knowledge, is the first shared task in language typology and language 

evolution. The task was: measure and compare the complexities of a set of 37 

language varieties of 7 families (see Table 1 and Figure 1). The participants were 

free to choose what they wanted to measure, but they were requested to clearly 

state: 1) what exactly is being measured; 2) how the measure is calculated, and 

the theoretical rationale behind the method; 3) the resulting value for each 

language. All corpus-based measures had to use the corpora available via the 

Universal Dependencies (UD) project, v2.1 (Nivre et al., 2017). There were no 

requirements about which level of annotation (if any) had to be used. 

The workshop, hosted as a satellite event at the Evolang 12 conference, saw 

seven submissions that yielded 34 measures, addressing various facets of 

complexity and spanning phonetics, morphology, morphosyntax, syntax and  

semantics. Most of the measures are corpus-based. See the workshop's website 

(http://www.christianbentz.de/MLC_proceedings.html) for supplementary 

materials and values of all measures. 

We would like to thank our sponsors, David Gil and Adam Schembri who 

kindly agreed to give invited talks at the workshop, and the developers of the UD 

corpora, in particular Joakim Nivre and Dan Zeman, who provided good advice 

on choosing suitable treebanks from the UD collection.  

 

Aleksandrs Berdicevskis, Christian Bentz 
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Table 1. Languages and treebanks used in the shared task. 

Language ISO Treebank size (K) Family Genus 

Afrikaans afr 49 IE Germanic 

Arabic arb 202 Afro-Asiatic Semitic 

Basque eus 121 Basque Basque 

Bulgarian bul 156 IE Slavic 

Catalan cat 531 IE Romance 

Chinese  cmn 123 Sino-Tibetan Sinitic 

Croatian hrv 197 IE Slavic 

Czech  ces 2222 IE Slavic 

Danish dan 100 IE Germanic 

Dutch nld 208 IE Germanic 

English eng 254 IE Germanic 

Estonian est 106 Uralic Finnic 

Finnish fin 202 Uralic Finnic 

French fra 402 IE Romance 

Galician  glg 138 IE Romance 

Greek ell 63 IE Greek 

Hebrew heb 161 Afro-Asiatic Semitic 

Hindi hin 351 IE Indic 

Hungarian hun 42 Uralic Ugric 

Italian ita 293 IE Romance 

Latvian lav 90 IE Baltic 

Norwegian (Bokmaal) nob 310 IE Germanic 

Norwegian (Nynorsk) nno 301 IE Germanic 

Persian pes 152 IE Iranian 

Polish pol 83 IE Slavic 

Portuguese  por 227 IE Romance 

Romanian ron 218 IE Romance 

Russian rus 1107 IE Slavic 

Serbian srp 86 IE Slavic 

Slovak slk 106 IE Slavic 

Slovenian  slv 140 IE Slavic 

Spanish spa 549 IE Romance 

Swedish swe 96 IE Germanic 

Turkish  tur 58 Turkic Turkic 

Ukrainian ukr 100 IE Slavic 

Urdu urd 138 IE Indic 

Vietnamese vie 43 Austro-Asiatic Viet-Muong 
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Figure 1. A phylogenetic tree of the 37 languages used in the shared task, based on the Glottolog 

classification. For illustration purposes the 7 families are rooted in the "World" node. 
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EXPLOITING UNIVERSAL DEPENDENCIES TREEBANKS FOR
MEASURING MORPHOSYNTACTIC COMPLEXITY

Çağrı Çöltekin*1 and Taraka Rama2

*Corresponding Author: ccoltekin@sfs.uni-tuebingen.de
1Department of Linguistics, University of Tübingen, Germany

2Department of Informatics, University Oslo, Norway

We present six different measures of morphosyntactic complexity, calculated on 37 Universal
Dependencies treebanks. We define the measures (some of which are not published in the earlier
literature), present the results, and discuss relationships between the measures.

1. Introduction

There has been recent interest in quantifying linguistic complexity (Juola, 1998;
Dahl, 2004; Newmeyer & Preston, 2014; Bentz, Alikaniotis, Cysouw, & Ferrer-i
Cancho, 2017; Koplenig, Meyer, Wolfer, & Mueller-Spitzer, 2017; Stump, 2017).
Besides the theoretical interest, quantifying complexity of languages or subsys-
tems of languages is also important for first and second language acquisition re-
search. In this paper, we present a number of morphosyntactic measures, some
proposed in earlier literature, and some novel to the best of our knowledge.

The Measuring Linguistic Complexity (MLC) shared task aims to bring to-
gether different measures of linguistic complexity, encouraging the use of Univer-
sal Dependencies (UD) treebanks (Nivre et al., 2016). The UD project defines a
unified tagset, and the UD treebanks already include a large number of languages.1

The multi-lingual focus of the UD project requires paying attention to linguistic
typology (Croft, Nordquist, Looney, & Regan, 2017), and the treebanks, in return,
constitute a promising resource for the typological (and in general multi-lingual)
research. Not surprisingly, the MLC shared task offers a subset of the UD tree-
banks as the data set for measuring complexity of (subsystems of) languages.

In this paper, we present a number of quantitative measures of morphosyntac-
tic complexity, namely, type/token ratio (TTR, e.g., Kettunen, 2014); mean size
of paradigm (MSP Xanthos et al., 2011); entropy of morphological-feature dis-
tribution; entropy of morphological-feature distribution conditioned on the word

1Current UD release (v2.1) includes over 100 treebanks covering 64 languages. The candidate
treebanks for the upcoming release includes treebanks for 16 other languages.

1



forms; entropy of word-form distribution conditioned on morphological features;
and part-of-speech tag n-gram perplexity, calculated on the MLC selection of the
37 UD treebanks.

2. Measures

We report five measures (TTR, MSP, and variants of morphological feature en-
tropy) for measuring morphological complexity, and one, POS tag n-gram per-
plexity, for measuring syntactic complexity. Except the first two (TTR and MSP),
the measures discussed here are all suitable for richly-annotated corpora, and to
our knowledge not used in this form in the previous literature.

2.1. Type/token ratio (TTR)

The TTR is a time-tested metric for measuring linguistic complexity. When used
as a measure of complexity of a language, high TTR indicates rich morphology.
Since the TTR depends on corpus length, it is a common practice to calculate the
TTR using a fixed window size (Kettunen, 2014). We calculate the TTR on a
fixed-length random sample, and take average over multiple samples. The sam-
pling procedure is described in Section 3.

2.2. Mean size of paradigm (MSP)

Xanthos et al. (2011) propose the MSP as a measure of morphological complexity,
and show its relation with the acquisition of morphology by young learners. The
MSP is simply the number of word-form types divided by the number of lemma
types. The MSP also depends on the text size. Hence, similar to Xanthos et al.
(2011), we use a sampling-based approach (as in the TTR calculation).

2.3. Morphological feature entropy (MFE)

Any corpus that annotates words (or tokens) with a set of labels defines a categor-
ical distribution. With MFE (defined in Equation 1), we estimate the categorical
distribution of morphological features from the treebank, and calculate its entropy.

MFE = −
∑
f

p(f) log2 p(f) (1)

where f ranges over all observed feature-value pairs (e.g., Case=Acc) in the
treebank. The probabilities are estimated with the maximum likelihood estimation
(MLE) over all tokens (not types).

Intuitively, the entropy of this distribution indicates the richness of the mor-
phological features encoded in the language. Everything being equal, a language
with a larger morphological feature inventory will have higher MFE. However, the
shape of the distribution also matters. A distribution that tends towards the uni-
form distribution, where all labels are equally likely, will also have higher entropy
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compared to distributions that favor only a few high-probability (or frequent) fea-
tures. Since the MFE does not depend on corpus size, we report values that are
calculated over the complete available corpus.2 This measure is similar to the
enumerative complexity as defined by Ackerman and Malouf (2013).

2.4. Conditional feature entropy

Another aspect or dimension of morphological complexity is about transparency
of a morphological system. Arguably, if we can predict morphological features
from surface forms, and surface forms from morphological features, the language
exhibits less complexity – e.g., when viewed from a learner’s perspective.

As a first approximation for measuring transparency of the morphological sys-
tem, we calculate two average conditional feature entropy values. The conditional
entropy of a distribution Y given another distribution X is defined as

H(Y|X) =
∑

x∈X,y∈Y

p(x,y) log2 p(y|x) .

The first measure we present, CFEw|m, is simply the conditional entropy of
word forms given morphological features, H(w |m), and the second measure,
CFEm|w, is the conditional entropy of features given word forms, H(m |w). It
should be noted that these measures do not only measure the complexity of the
morphological system but also measure the lexical complexity or ambiguity.

The conditional entropy measures we use are similar to integrative complexity
defined by Ackerman and Malouf (2013). However, our measures reflect actual
usage as reflected by the morphologically annotated corpora at hand, as opposed
to the paradigm tables extracted from descriptive grammars.

2.5. POS tag n-gram perplexity (POSP)

As a measure of predictability of strictness of word order, we also compute the av-
erage perplexity of the UD POS tag n-grams. The perplexity is a popular measure
of unpredictability in computational linguistics literature. It is defined as 2H(X),
where H(X) is the entropy of a probability distribution X (of POS tag sequences
in our case). The intuitive interpretation of POSP is the average number of pos-
sible POS tags after each position in the corpus. Intuitively, the languages with
more strict word order is expected to have lower entropy (hence lower POSP).
The POSP should correlate with the morphological complexity, particularly MFE,
since rich morphology is typically associated with flexibility in the word order.

In this paper, we only present results of bigram perplexity. However, this
can easily be extended to use higher order n-grams, or using entropy rate
(Kontoyiannis, Algoet, Suhov, & Wyner, 1998; Gao, Kontoyiannis, & Bienen-
stock, 2008) for estimating the entropy of the POS tag sequence.

2However, the estimation of the underlying distribution will be better with larger corpora.
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Figure 1. The values of the complexity measures. The measures are linearly scaled to fit into the
same y-axis range, the languages are sorted in order of increasing TTR.

3. Data and experimental setup

The data set contains 37 treebanks from Universal Dependencies (UD) project,
from 36 languages.3 Although all treebanks conform to UD v2 annotation scheme,
the sizes of the treebanks and some aspects of annotations vary considerably. The
smallest treebank (Hungarian) has 1 801 sentences and 42 032 tokens, and the
largest (Czech) consists of 87 914 sentences and 1 506 484 tokens. All treebanks,
except Galician, include morphological feature annotations. The usage of UD
POS tag inventory is relatively stable across languages. The number of POS tags
used vary between 14 and 18. The morphological features and relation types used
in different treebanks are more varied, ranging between 2 to 29 and 25 to 55 for
morphological feature labels and dependency labels, respectively.

As noted above, some of our measures depend on text size. To be able to get
comparable measures, we calculate TTR and MSP from 20 000 tokens sampled
randomly. The numbers we report are the mean of 1 000 random samples.4

4. Results and Discussion

We present values of all measures discussed in Figure 1. The correlation between
the languages are reported in Table 1. The overall results agree with our expecta-
tions and the earlier literature. The languages known to be more morphologically
complex, are placed on the upper end of the scale with respect to measures that
indicate enumerative morphological complexity. However, we also observe that

3Norwegian is represented by two treebanks, with different, but closely related dialects that also
follow different orthographic conventions.

4The source code used for calculating the measures is publicly available at https://github
.com/coltekin/mlc2018.
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Table 1. Correlations between all measures. The values presented in the upper triangle matrix are
Pearson’s correlation coefficient, while Spearman’s rank correlation is listed in the lower triangle.

TTR MSP MFE CFEw|m CFEm|w POSP

TTR 0.617 3 0.740 2 −0.333 5 −0.064 5 0.460 1
MSP 0.651 5 0.556 9 −0.308 9 0.276 4 0.142 0
MFE 0.776 4 0.658 4 −0.063 1 −0.237 1 0.418 5
CFEw|m −0.100 8 −0.235 4 −0.027 3 −0.315 6 −0.337 7
CFEm|w −0.027 3 0.254 5 −0.029 9 −0.292 3 −0.175 3
POSP 0.422 2 0.236 8 0.402 3 0.122 3 −0.022 3

there is a modest but negative correlation between the enumerative complexity and
integrative complexity measures used in this study. Furthermore, the (enumera-
tive) morphological complexity, as expected, is also moderately correlated with
flexibility of the word-order of the language measured by POSP.

The results also show some curious differences, e.g., Chinese showing moder-
ately high TTR, despite lower MSP and MFE. Some of these, e.g., unexpectedly
low MFE for Galician, however, is due to lack of annotations in the particular tree-
bank. POSP seems to correlate with morphological complexity measures, indicat-
ing that POS tag sequences are less predictable in morphologically rich languages.
However, some observations in Figure 1 needs further investigations. For exam-
ple, the fact that Germanic languages, including English, showing rather high
POSP, and despite being morphologically complex, Turkish showing showing a
low POSP. Some of these differences may be due to the fact that our measure-
ments are based on bigrams, hence being sensitive word order flexibility in local
contexts, e.g., noun phrases, rather than flexibility at the level of the clause.

There are two major differences between the current study (also many others
in this volume) and most earlier corpus- and grammar-based work on quantifying
linguistic complexity. First, we make use of rich linguistic annotations, which
offer many novel ways to measure linguistic complexity. Second, unlike many
earlier studies, our material is not a (translated) parallel corpus collection. This
allows measuring the complexity on a more ‘natural’ linguistic data, however, it
also requires measures that indicate the differences between the languages, rather
than other dimensions such as domain, genre or style. Compared to works that
are based on descriptive grammars, working with relatively small corpora may
result in missing some (rare) linguistic constructions. In this respect, larger (au-
tomatically annotated) data sets can be useful, or recent grammar-book treebanks
(Çöltekin, 2015; Rama & Vajjala, 2017) may offer an interesting middle ground.

Although the measures and the results presented here needs further investi-
gation and refinements that are beyond the scope of this short paper, the results
are encouraging about using richly and uniformly annotated corpora, such as UD
treebanks, for investigating many aspects of linguistic complexity.
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KOLMOGOROV COMPLEXITY AS A UNIVERSAL MEASURE OF
LANGUAGE COMPLEXITY

Katharina Ehret

kehret@sfu.ca

Department of Linguistics, Simon Fraser University, Burnaby, Canada

This paper presents an unsupervised information-theoretic measure that is a promising candi-
date for becoming a universally applicable metric of language complexity. The measure boils
down to Kolmogorov complexity and uses compression programs to assess the complexity in
text samples via their information content. Generally, better compression rates indicate lower
complexity. In this paper, the measure is applied to a typological dataset of 37 languages cover-
ing 7 different language families. Specifically, overall, morphological and syntactic complexity
are measured. The results often coincide with intuitive complexity judgements, e.g. Afrikaans
is overall comparatively simple, Turkish is morphologically complex. Yet, in some cases the
results are surprising, e.g. Chinese turns out to be morphologically highly complex. It is con-
cluded that the method needs further adaptation for the application to different writing systems.
Despite this caveat, the method is in principle applicable to all types of languages.

1. Introduction

Language complexity is a very fashionable research topic in the typological-
sociolinguistics community (Baechler & Seiler, 2016; Baerman, Brown, & Cor-
bett, 2015; Kortmann & Szmrecsanyi, 2012; Sampson, 2009; Miestamo, 2008).
Theoretical complexity research is concerned with the definition and measure-
ment of language complexity, and the reasons for variation in language complex-
ity. Most of this research analyses complexity variation in cross-linguistic datasets
(e.g. Nichols, 1992) or different varieties of the same language (e.g. Szmrecsanyi,
2009; Trudgill, 2009). Despite the plethora of research on language complexity,
no universally applicable definition or metric of complexity exists. Thus, it is vir-
tually impossible to compare complexity measurements across different studies.

Against this backdrop, this paper presents an unsupervised information-
theoretic measure of language complexity, which has the potential of becoming
a universally applicable metric of complexity. This measure, also dubbed the
compression technique (see Ehret, 2017), was first introduced by Juola (1998)
and substantially extended by Ehret (2017), Ehret and Szmrecsanyi (2016), and
Ehret (2014). The measure is based on the notion of Kolmogorov complexity and
measures the information content of a string by the length of the shortest possi-
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ble description that is required to (re)construct the exact string (Li, Chen, Li, Ma,
& Vitányi, 2004; Juola, 2008). The two strings below, for example, both count
ten symbols. String (1-a) can be compressed to four symbols. In contrast, the
shortest description of string (1-b) is the string itself, which counts ten symbols.
String (1-a) is therefore less complex than string (1-b).

(1) a. pkpkpkpkpk (10 symbols) Þ 5×gh (4 symbols)
b. c4pk?9agy7 (10 symbols) Þ c4pk?9agy7 (10 symbols)

Although Kolmogorov complexity is uncomputable it can be conveniently ap-
proximated with text compression programs. The basic idea behind the compres-
sion technique is that text samples which can be compressed comparatively better
are linguistically comparatively less complex. In linguistic terms, information-
theoretic Kolmogorov-based complexity is a measure of structural surface redun-
dancy and (ir)regularity. In contrast to most traditional complexity metrics which
are often based on subjective or reductionist feature selection, the measure is ar-
guably more objective and holistic, and at the same time inherently usage-based
as it is radically text-based. In fact, it is agnostic about form-function pairings as
the algorithm has no knowledge of the texts it is applied to. It is this text-based
(in contrast to feature-based) approach that makes the compression technique a
promising candidate for a universally applicable measure of language complexity.
In this paper, the compression technique is used to measure overall and, through
the application of various distortion techniques, morphological and syntactic com-
plexity.

2. Methodology and data

The dataset is drawn from the Universal Dependencies project (v2.1) and specif-
ically comprises a convenient sample of 37 languages covering 7 different lan-
guage families: Afrikaans, Arabic, Basque, Bulgarian, Catalan, Chinese, Croat-
ion, Czech, Danish, Dutch, English, Estonian, Finnish, French, Galician, Greek,
Hebrew, Hindi, Hungarian, Italian, Latvian, Norwegian Bokmaal, Norwegian Ny-
orsk, Persian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian,
Spanish, Swedish, Turkish, Ukrainian, Urdu, Vietnamese. The current dataset
thus consists of 37 text samples, one for each language. All texts were UNI-
CODE normalised and converted to lowercase; non-alphabetical characters were
automatically removed and all end-of-sentence markers were replaced by a single
fullstop (for details see Ehret, 2017).

Overall complexity is measured in a straighforward manner by taking two
measurements for each text sample: the file size (in bytes) before compression and
the file size (in bytes) after compression. The file size pairings are then subjected
to regression analysis in order to eliminate any trivial correlations between the
two measurements. The resulting adjusted overall complexity scores (regression
residuals, in bytes) are taken as indicator of the overall complexity of the text
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samples. Higher scores indicate overall higher linguistic complexity; lower scores
indicate lower complexity.

Inspired by Juola (1998, 2008), morphological and syntactic complexity are
measured by applying distortion techniques prior to compression. Syntactic dis-
tortion is achieved by the deletion of 10% of all tokens in each text file. This
disrupts word order regularities and greatly affects syntactically complex texts,
i.e. texts with a comparatively fixed word order. Syntactically less complex texts
are little affected by this procedure, as they lack syntactic interdependencies that
could be compromised. Comparatively bad compression ratios after syntactic dis-
tortion indicate comparatively high syntactic complexity. Morphological distor-
tion is performed by the deletion of 10% of all characters in each text file thereby
creating new “word forms”. This compromises morphological regularity: mor-
phologically complex languages exhibit overall a relatively large amount of word
forms in any case, so they are little affected. Yet, in morphologically less com-
plex languages proportionally more random noise is created. Comparatively bad
compression ratios after morphological distortion thus indicate low morphological
complexity. In this spirit, the scores for morphological and syntactic complexity
are calculated based on two file sizes: the compressed file size of the original text
and the compressed file size of the distorted text. To be specific, the morpho-
logical complexity score is defined as −m

c , where m is the compressed file size
after morphological distortion and c the original compressed file size. The syn-
tactic complexity score is defined as s

c , where s is the compressed file size after
syntactic distortion and c the file size before distortion.

The above described distortion and compression procedure uses gzip (v1.2.4
http://www.gzip.org/) for text compression, and is applied with N =
1000 iterations (for details see Ehret, 2017).1All complexity scores reported in
this paper are based on the arithmetic mean calculated for the individual com-
plexity scores across N = 1000 iterations. Detailed statistics such as individual
complexity scores and file sizes are included in the supplementary material. All
statistics were conducted in R (v3.3.3, R Core Team (2017)).

3. Kolmogorov complexity in a typological perspective

In Fig. 1 (upper plot) an overall complexity hierarchy of the 37 languages is pre-
sented. In many cases, the results match with general expectations about complex-
ity. For example, the Afrikaans text is overall less complex than the Hungarian
text; the English text is overall below-average complex, while the French text is
overall above-average complex. In some cases, however, the compression results
are surprising: Chinese, in particular, is an outlier in the dataset. Its ranking as
the overall most complex text is most likely an artifact of its specific writing sys-

1The compression and distortion scripts are available at https://github.com/katehret/
measuring-language-complexity.
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tem. In a similar vein, Urdu is ranked as one of the overall most complex texts,
while Hindi is ranked as the overall least complex text. The placement of Urdu
and Hindi at the extreme opposite ends of the overall complexity hierarchy could
also be due to their use of different writing systems.

Figure 1. Upper plot: Overall complexity hierarchy. Negative residuals indicate below-average com-
plexity; positive residuals indicate above-average complexity. Lower plot: Morphological by syntactic
complexity. Abscissa indexes increased syntactic complexity; ordinate indexes increased morphologi-
cal complexity.
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The lower plot of Fig. 1, displays the compression measurements in the two-
dimensional space of morphological and syntactic Kolmogorov complexity. Gen-
erally, the results coincide with intuitive complexity judgements. The Afrikaans
text, for instance, exhibits the least morphological complexity, i.e. it contains lit-
tle word form variation. In terms of syntax the Afrikaans text is rather complex,
i.e. it has lots of word order rules and comparatively rigid syntactic patterns. The
Hebrew text, in contrast, is comparatively more complex in terms of morphology
and exhibits average syntactic complexity. Yet, some complexity placements are
rather counter-intuitive: For example, the English text is morphologically more
complex than the Hungarian text. This dislocation must be attributed to a lack of
content control in the data as the compression technique has been shown to re-
liably measure complexity in typological datasets (Ehret & Szmrecsanyi, 2016).
Chinese, again, is an outlier in the dataset, and exhibits the highest morphological
complexity.

4. Conclusion

This paper presents Kolmogorov complexity as a universal measure of language
complexity which could facilitate the comparison of complexity measurements
across different studies. That said, in its current implementation the compres-
sion technique relies on distortion procedures developed for the Latin alphabet;
this operationalisation is problematic for languages like Chinese. Future appli-
cations should utilise more universally applicable distortion techniques (see e.g.
Koplenig, Meyer, Wolfer, & Müller-Spitzer, 2017). Furthermore, the compara-
bility and reliability of the results obtained by the compression technique greatly
depend on the quality of the input. Specifically, the comparability of the proposi-
tional content across different text samples is a major factor influencing the com-
pression results (for a discussion see Ehret, 2017). For the analysis of large-scale
typological datasets it is recommended to draw on parallel text corpora, such as the
Bible, because differences due to propositional content can be ruled out (Wälchli,
2007), or on carefully compiled naturalistic datasets. Nevertheless, the compres-
sion technique is a promising candidate for becoming a universally applicable
measure of language complexity because it does not rely on language-specific
feature catalogues but is, in principle, applicable to all types of languages.
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CONTRASTING PHONETIC COMPLEXITY ACROSS LANGUAGES: TWO APPROACHES 
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This paper examines phonetic complexity via two approaches that rely on transcribed            
word lists. Both approaches focus on results obtained for a 37-language sample, but             
contrast these results with findings from about 7000 language varieties. For the first             
approach, complexity is measured simply as the ratio of types of phones to tokens of               
phones, for each list representing a particular language variety. The second approach            
operationalizes complexity as unpredictability of sound usage, and simplicity as          
predictability. Predictability is based on the global mean frequency of occurrence of 41             
sound types across all language varieties in the data. These global frequencies are then              
used to predict sound usage in the 37 languages focused upon, with less predictable              
languages deemed more “complex”. Three languages in the sample are found to be             
complex according to both metrics explored here, while two languages are found to be              
simple according to both metrics. These findings are exploratory given the limitations of             
the word lists tested. 

1. Introduction 

Languages vary markedly in terms of the number of sounds they utilize. One             
could argue that languages with more phonemes represent complex phonological          
systems, though such a claim overlooks non-phonemic parameters including         
syllable structure and prosodic phenomena. Still, we can speak of specific kinds            
of complexity, e.g. complexity of phonemic inventories, without making         
presumptions regarding overall phonological, phonetic, or otherwise linguistic        
complexity. In this study I offer two approaches to looking at the complexity of              
languages’ variant usage of sounds, both of which focus upon the phonetic units             
in basic transcriptions of 40-100 words (Swadesh-type lists). I apply both           
methods to the 37-language sample but, as critical background to this sample, I             
also apply the metrics to thousands of other languages.  
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2. Type:token ratio of phonetic segments 

The first metric of complexity is simply the type:token ratio of transcribed            
phonetic units. The assumption underlying this metric is that languages with a            
greater density of sound types are more complex in terms of their sound-type             
inventories. I say “sound-types” as opposed to phonemes because this study           
relies on the ASJP database, a collection of roughly 7000 word lists that are              
phonetically transcribed. The phonetic transcriptions in the database are         
somewhat broad, as they use 41 basic sound types (Wichmann et al. 2016). Still,              
despite any limitations, there are advantages to using a database representing so            
many languages, as we can contrast our results for the 37-language sample with             
results from the bulk of the world’s languages. (Over 4500 distinct ISO codes             
are represented in the data.) 
 
To calculate the type:token ratio, I simply summed the number of unique sound             
types represented in a word list, and then divided that sum by the total number               
of sound tokens represented in the list. Secondary symbols for nasalization and            
other phenomena were ignored. Since this study focused on phonetic segments           
as opposed to phonemes, two-sound sequences such as prenasalized stops were           
treated as separate sounds. To contextualize the type:token ratios obtained for           
the 37-language sample, I gathered type:token ratios for about 7000 other           
varieties in the database. (I excluded varieties for artificially constructed          
languages.) I then obtained family-level averages of these ratios. The 264 family            
groupings were based on the WALS database (Dryer et al. 2013). Family means             
of type:token ratios ranged from 0.026 to 0.283. The overall mean across            
families was 0.121. The mean for the 37-language sample was about the same,             
at 0.119. (For a list of all family means, see the supplemental material.) The              
following ordering was observed, for the 37-language sample, from highest to           
lowest type:token ratio: 1. Norwegian (Nynorsk) 2. Catalan 3. Portuguese 4.           
Afrikaans 5. Danish 6. Arabic 7. Swedish 8. Polish 9. Czech 10. Slovak 11.              
Slovenian 12. Urdu 13. Turkish 14. Hebrew 15. Dutch 16. Galician 17. Croatian             
18. Romanian 19. Italian 20. Norwegian (Bokmaal) 21. Bulgarian 22. Ukrainian           
23. Vietnamese 24. Latvian 25. Mandarin 26. Greek 27. English 28. Hungarian            
29. French 30. Persian 31. Hindi 32. Estonian 33. Russian 34. Serbian 35.             
Finnish 36. Spanish 37. Basque (See results file.) 
 
To be clear, the suggestion being made here is not that languages with higher              
type:token ratios are necessarily more complex in terms of articulation. I am            
simply proffering one way of exploring phonetic segment complexity, one that           
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could be tested for associations with socioecological factors. This approach          
could also be applied to more robust intra-linguistic samples.  

3. Predictability of sounds’ usage rates 

Another way to think of phonetic complexity is in terms of deviation from a              
typologically based expectation of languages’ usage of individual sound types.          
According to such an approach, languages that use crosslinguistically         
uncommon sounds frequently, or common sounds very infrequently, would be          
more unpredictable and therefore more “complex” in a typological sense.  
 
Given the lists of sounds in a particular word list, we can predict (roughly) how               
much each sound is used (Everett, under revision). For instance, we may predict             
that an alveolar nasal is used frequently, a voiceless alveolar stop a bit less so, a                
voiced alveolar stop even less, and so on. (Assuming these sounds are all present              
in the language in question.) The second metric for complexity adopted here            
relies on the fact that sounds’ “usage rates” are somewhat predictable. Usage            
rates refer to the proportion of all the sound tokens in a given word list that are                 
represented by a given sound. For instance, if there are four tokens of [t] in word                
list, out of 400 total sounds in the words in the list, then the usage rate of [t] is                   
simply 0.01. Usage rates can be used to test the predictability of the occurrence              
of sounds across the world’s languages. To do so, I adopted the following five              
steps: 1) Usage rates were obtained for all 41 sounds in each of the 6902               
language varieties tested. 2) The average family-level usage rates were found for            
all sounds for each of 264 WALS language families. 3) These family-level            
averages were then averaged, resulting in phylogenetically controlled average         
usage rates for all sounds. 4) The sounds were then ranked according to their              
usage rates, at a global scale. (Sound rankings and mean usage rates are             
presented in the supplemental material.) 5) These global rankings were used to            
generate the predicted usage rates of sound types for individual languages, and            
these predicted usage rates were then contrasted with actual usage rates. Step 5             
requires some elaboration: How are sound rankings, from most (#1) to least            
(#41) used in the world’s languages, transformed into predicted usage rates? I            
transformed the rankings into predicted usage rates via the Borodovsky and           
Gusein-Zade formula. This formula was developed to predict the frequency of           
phonemes within a language from the frequency ranking of phonemes for that            
language (Tambovtsev and Martindale 2007). The formula allows us to predict a            
phoneme’s intralinguistic frequency (fr ) from its intralinguistic rank (r): 
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fr =  (log(n ) og r)n
1 + 1 − l  

 
For this study, I used the same formula but used the crosslinguistic rank, arrived              
at in step 4 above, as r. For n, I used the number of basic sounds in the database,                   
or 41. (I should note that this formula only provides a marginal improvement to              
simply using the observed global average usage rates as the expected usage rates             
within each language, without using any transformation at all.) 
 
With the predicted usage rates of the 41 sounds in hand, I then focused on the                
actual usage rates of the sounds in the 37-language sample. The association            
between predicted and actual usage rates, for all 37 varieties, is depicted in             
Figure 1. For each of the 37 languages, I ran a regression testing the association               
between predicted usage and actual usage. Higher R2 values correspond to           
greater overall predictability. R2 values ranged from 0.76 to 0.15, with a median             
of 0.51. Lower R2 values are suggestive of greater usage-based deviance from a             
crosslinguistc norm, a kind of typologically-based complexity. The association         
is quite robust in most cases, but some varieties are clearly more predictable             
vis-à-vis their usage of sounds in these word lists. (See Figure 1 below. See              
results file for R2 values of each of the 37 languages.)  

4. Conclusion 

I have outlined two potential approaches, of many, to measuring phonetic           
complexity. Each approach is based on a different interpretation of what is            
meant by complexity. One considers languages with predictable usage rates to           
be less complex (though admittedly this operationalization equates typologically         
anomalous usage with complexity, a strategy open to debate), the other           
considers languages that rely repeatedly on the same sounds, with relatively           
sparse usage of distinct sound types, to be less complex. The metrics resulting             
from these approaches are admittedly coarse but, I think, useful as exploratory            
measures. The complexity rankings of the 37 languages are somewhat similar           
for both metrics (Spearman’s rho=0.44, p=.007). Finally, some remarks on          
individual languages: Interestingly, three closely related languages are the three          
most complex languages according to the predictability metric: Swedish,         
Danish, and Norwegian (Bokmaal), in that order. Swedish and Danish are also in             
the top 7 according to the type:token metric. Norwegian (Bokmaal) is not            
amongst the most complex according to the type:token metric, though          
Norwegian (Nynorsk) is. So there is some Scandinavian flavor to the more            
complex varieties according to both metrics, but also some cross-dialectal          
variability (which admittedly may simply be the artifact of the small sample            
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sizes). In contrast, both Finnish and Basque are ranked amongst the three “least             
complex”, for both metrics. Of course it remains to be seen just how much these               
findings, based as they are on short word lists, are representative of larger             
patterns in these languages. What we can say is that, given the metrics and data               
utilized here, there is some observable though modest coherence at both ends of             
the range of complexity, for this sample of 37 languages.  
 

 
 

Figure 1. Relationship between predicted usage and actual usage, for each of the 37 languages               
in the sample. Each LMS line depicts the association between the typologically based             
predicted usage of 41 sound types and a language’s actual usage of those sound types (judging                
from the transcribed word lists). Each column of 37 dots represents the usage rates of one of                 
the 41 sounds, across each language in the 37-language sample.  

 

References 

 
Everett, C. (Under revision) The predictability of sound usage across languages. 
Dryer, Matthew S. & Haspelmath, Martin (eds.) (2013) The World Atlas of  

Language Structures Online. Leipzig: Max Planck Institute for  
Evolutionary Anthropology.  

Tambovtsev, Y. & Martindale, C. (2007) Phoneme frequencies follow a Yule  
distribution: The form of the phonemic distribution in world languages.  
SKASE Journal of Theoretical Linguistics 4.2 

Wichmann, S., Holman, E., and Brown, C. (2016) The ASJP Database. 

 

19



POS TAG PERPLEXITY AS A MEASURE OF SYNTACTIC
COMPLEXITY

Kilu von Prince*1,2 and Vera Demberg2

*Corresponding Author: kilu.von.prince@hu-berlin.de
1Humboldt-Universität, Berlin, Germany

2Universität des Saarlandes, Saarbrücken, Germany

Comparing languages of the world with respect to their complexity is a long-
standing open question in linguistics. We here focus on syntactic complexity, a
concept that has been particularly hard to address due to the lack of readily avail-
able syntactically annotated corpora and the intricacies of syntactic theories. We
propose to use a simple information-theoretic measure, perplexity, on the POS tag
sequence of texts. Perplexity captures how predictable POS tags are on average
given their recent co-texts. Calculating perplexity based on POS tag sequences
helps us to abstract away from morphological or lexical features of the language,
in order to get at the predictability of word order. In this paper, we compare POS
tag perplexity to other recently proposed measures of syntactic complexity, and
evaluate measures by correlating them with expert-proposed scores of syntactic
flexibility (Bakker 1998).

1. Introduction

The question of how and why languages may differ in terms of their overall
or partial complexity is one of the oldest and most hotly debated issues in
typology (Nichols, 1992; Trudgill, 2011; McWhorter, 2001; Sampson, 2009;
Joseph & Newmeyer, 2012). Since Juola (1998), several attempts have
been made to assess the complexity of languages based on texts rather than
typological features (Juola, 2008; Futrell, Mahowald, & Gibson, 2015; Ehret
& Szmrecsanyi, 2016; Bentz, 2016; Koplenig, Meyer, Wolfer, & Müller-
Spitzer, 2017). In this paper, we will assess the viability of using trigram
perplexity at the POS level for assessing cross-linguistic variation between
non-parallel corpora. This measure is defined as below:

(1) Trigram perplexity:
2−

1
N

∑N
n=1 P (posn|posn−2,posn−1) log2 P (posn|posn−2,posn−1)

The reason for working on POS tag sequences instead of words directly
is to avoid possible confounds due to writing systems, lexical richness or
choice, and, to some extent, compensate for the fact that the data we are
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working with are not parallel texts.

2. Related Work

We compare the estimates of our method to various previously proposed
measures, which we will briefly introduce here.
Expert-ratings of syntactic complexity. Bakker (1998) rated syntactic flex-
ibility, consistency and consequence of languages based on twelve binary
grammatical features as described in descriptive accounts and expert ques-
tionnaires on each language. Bakker’s syntactic flexibility measure, which
was also used in prior evaluations such as Ehret and Szmrecsanyi (2016)
seemed like the most representative source of expert syntactic complexity
ratings against which automatic measures can be evaluated.
Zip compression as an approximation to Kolmogorov complexity. Zip com-
pression has been known to approximate Kolmogorov complexity and has
previously been used as a measure of linguistic complexity (Juola, 1998,
2008; Ehret & Szmrecsanyi, 2016). We calculated zip compression for each
of the corpora, to achieve best possible comparability with our proposed
POS tag perplexity metric.
Ehret and Szmrecsanyi (2016). The authors used a parallel corpus consist-
ing of translations of Alice in Wonderland into nine lanuages, compiled by
Annemarie Verkerk, and non-parallel newspaper corpora from the same lan-
guages. To measure syntactic complexity, they masked syntactic regulari-
ties by randomly deleting 10% of all word tokens. They then measured the
difference between the zip-compressed original text and the zip-compressed
masked version.
Koplenig et al. (2017) used the massive Parallel Bible Corpus Mayer and
Cysouw (2014), with translation into almost 1200 languages. They also
created syntactically masked versions of each text by scrambling sentence-
internal word order. They then measured an approximation to entropy for
the masked and unmasked versions and calculated the difference between
them as a measure of syntactic complexity.

3. Methods

We first analyzed the distribution of POS tags across corpora to ensure
comparability. While some of those differences may reflect genuine cross-
linguistic variation that speaks to differences in the size of syntactic in-
ventories, we need to keep in mind that some variation may have been
caused by language-external factors instead. For example, the Chinese
corpus does not use the tag for subordinating conjunctions, even though
it has very straightforward candidates for this category, such as yīnwéi,
“because”, which is tagged as an adposition instead. The Arabic corpus
contains a much larger set of Other tags compared to the other corpora,
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which may be an indication of the limits of the applicability of a universal
tag set. Such inconsistencies are a potential cause for concern for future
fine-grained comparative work, especially if the list of languages in the set
expands to include more non-European languages.

To assess possible effects of POS tag distributions across languages, we
also measured unigram perplexity 2−

∑
pos∈POS P (pos) log2 P (pos); the proba-

bility of a POS tag pos was estimated in terms of its frequency in the
corpus. Unigram perplexity over POS tags hence quantifies the differences
in entropy of the POS tag inventory of a language. In order to separate
out trigram perplexity from unigram perplexity, we propose an additional
measure: trigram perplexity divided by unigram perplexity to quantify the
predictability of syntactic categories given previous context compared to
POS tag frequencies. This measure gives us a sense of the predictability of
word order that is independent from how big and balanced the inventory
of POS tags is.

For calculating perplexity and zip compression, we extracted POS tags
from each of the corpora, split the files into chunks of 42k tags – the size of
the smallest corpus. This allowed us to also assess the effect of corpus size
on complexity scores and also allowed us to calculate variance for different
subsets of texts for the same language. We found that estimates were
generally reliable; our results below report perplexities for the complete
dataset for each language, as our experiments showed that estimates on
42k subcorpora correlated at Spearman’s rho 0.98 with estimates from the
full corpora. This result demonstrates that working on POS sequences
avoids having to deal with data sparsity issues.

4. Results

Figure 1 shows that our perplexity measures are correlated with the syn-
tactic flexibility values proposed by Bakker (1998) (ρ = .45, p < 0.05).
The statistical analysis also shows that our measures predict human rat-
ings by Bakker more reliably than previously proposed measures (Juola,
1998; Ehret & Szmrecsanyi, 2016; Koplenig et al., 2017). Figure 1 visu-
ally illustrates the correlation between our Trigram/Unigram measure and
Bakker flexibility scores.

Among the languages for which there are no Bakker scores, our per-
plexity measures would predict that Hebrew, Afrikaans, Hindi, Urdu and
Arabic are among the syntactically more complex languages (if complexity
means lack of flexibility). For Vietnamese, Chinese, Persian, Hungarian,
Ukrainian and Czech, the classification as mid range or low syntactically
complex languages depends on whether unigram perplexity is taken into
account: Ukrainian and Czech have high unigram perplexity, and would
hence be classified as highly flexible languages in the trigram measure, but
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Table 1. Spearman’s correlation between various automatic measures of syntactic
complexity and Bakker (1998) flexibility scores. Column dir indicates whether the
correlation with Bakker scores is expected to be positive or negative. The right-hand
part of the table compares only the set of seven languages used both as part of Ehret
& Szmrecsanyi (2016) and as part of the datasets provided for the present workshop.

measure dir corr pval # lang corr pval # lang
avgzip neg -0.32 0.11 26 -0.71 0.07 7
Koplenig et al. ’17 neg -0.36 0.08 24 -0.29 0.53 7
E&S’16: Parallel Alice neg -0.71 0.07 7
E&S’16: News neg -0.43 0.33 7
unigram perplexity NA 0.12 0.57 26 -0.09 0.85 7
trigram perplexity pos 0.45 0.02 26 0.87 0.01 7
trigram/unigram pos 0.44 0.02 26 0.85 0.01 7
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Figure 1. Correlations of trigram perplexities divided by unigram perplexities with
flexibility values in Bakker 1998.

as medium complexity languages in the trigram/unigram measure. On
the other hand, Persian, Vietnamese and Chinese have low unigram per-
plexities and hence are only classified as highly flexible languages in the
trigram/unigram measure.

5. Discussion

In sum, our results show that surprisal values of POS tags, even in rela-
tively small, non-parallel corpora can be a meaningful measure of syntactic
complexity and perform better than similar methods at the word level. Our
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hypothesis is that measures at the word level may be compromised by unre-
lated factors, such as the rate of homographs in a given corpus. By focusing
on POS levels, these factors can be avoided.

While we did find a significant overall correlation of our methods with
Bakker (1998), some languages show a much better fit than others. In
particular, Turkish, Bulgarian and Greek are outside the expected range.
At this point, we do not have a perfect explanation for these mismatches.
Unfortunately, the ratings in Bakker (1998) are not entirely transparent: it
is unclear exactly which feature combination is assigned to each language.
Despite the very low score of 0.2 (on a scale from zero to one) from Bakker
(1998), Turkish could be expected to receive a relatively high score, since
it is well-known to be a free-word-order language. In this case, it may
therefore be that the corpus-based measure gives a more accurate estimate
of the actual flexibility the language has. Bulgarian and Greek are also
known for their relative freedom of word order, in line with Bakker’s high
scores, so their comparatively low values of POS trigram perplexity are
rather unexpected. It might be that these differences between description-
based assessments and corpus-based measures speak to actual differences
between theoretical possibilities and their implementation in language use.
It is however also possible that these mismatches are due to imperfections
in the POS tagger (which may affect some languages more than others) or
a non-representative selection of syntactic features in Bakker (1998).
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1. Purpose 

Expanding on the theoretical proposal in Ross (2014), I test the implications and 
feasibility of a detail-oriented, frequency-independent metric of complexity as 
applied to a large sample of languages, from the perspective of linguistic 
typology. I measure effective complexity in the sense of Gell-Mann (1994, p. 
58), characterizing the complexity of a system as the number of systematic rules 
required to describe it (e.g., grammar) while removing stochastic information 
(e.g., vocabulary). We can imagine the complexity of a language as the length of 
an ideal descriptive grammar: more paragraphs for more complex languages.1 
The task at hand is to implement such a metric for 37 languages from the 
Universal Dependencies project (http://universaldependencies.org/), as provided 
by the workshop organizers.2 This presents a unique challenge for Ross’s 
proposal, which asserts that accurately measuring complexity requires an 
exhaustive description of a language. But can we estimate linguistic complexity? 

2. Estimating complexity from corpus data 

How many rules are there in a language? Theoretical perspectives on the subject 
vary widely. Chomsky’s (1995) Minimalist Program strives to reduce all of the 
possible rules from earlier syntactic theories to the minimum number required to 
                                                             
1 And indeed the length of the paragraphs themselves, indicating the relative complexity of each 

feature. But that can only be measured after identifying all relevant features in the first place. For 
a literal answer to this question of length of descriptive grammars, see Section 5. 

2 A purely syntax-based measure is proposed based on the provided corpus data, although a full 
measure of complexity would also include other features (morphology, phonology, etc.). 
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explain the data. In the extreme, there may be only one rule of core syntax 
(Merge, combining two elements to form a larger phrase), but additional 
(possibly language-specific, or interface-based) rules beyond core syntax are 
required to explain the full range of cross-linguistic variation. At the other 
extreme, Construction Grammar (Goldberg, 1995, inter alia) posits an indefinite 
number of syntactic constructions, presumably stored like vocabulary in the 
lexicon. That introduces another problem for measuring complexity: if syntactic 
constructions are arbitrary like lexical items, perhaps they should be considered 
stochastic information and disregarded from our measurements of effective 
complexity. Regardless, we can reasonably assume that any prevailing syntactic 
theory will have a certain number of rules based on how many distinct (in 
whatever relevant sense) properties are found in describing the language. For 
example, 20 apparent rules might be combined into 10 with the same empirical 
coverage for a given theoretical perspective, presumably to a similar extent 
cross-linguistically. Thus we may ask not just how many but also what types of 
rules are found. But counting unique grammatical properties would require 
exhaustive descriptions for each language, so we must estimate the probability 
of a linguist identifying more distinct properties in one language than another. 
 
2.2. Dependency Density 

A preliminary proposal, appropriately convenient for the data provided for this 
task, would be to consider the types and distribution of syntactic dependencies 
in a corpus for each language. For example, adjectives may modify nouns, and 
subjects may indicate the agent of verbs. Given part-of-speech tagging along 
with dependency information in the corpus, we can measure the total number of 
unique dependency relationships. And by looking at the same amount of data for 
each language, we can estimate dependency density. Languages with higher 
dependency densities have more possible constructions for linguists to 
investigate, at least some of which may have unique properties that need to be 
explained independently, regardless of the particular theoretical framework. It is 
important to note that the most basic dependency types (adjective-noun, subject-
verb, etc.) will be both frequent in a given language, and also most likely to be 
found in all of the languages in the sample. Therefore, we must try to identify 
infrequent, typologically unusual syntactic features not found in all languages. 
By considering each unique dependency relationship regardless of frequency, 
this metric of comparative complexity will be primarily determined by the more 
numerous infrequent constructions in the language, given that the more common 
constructions will be shared, balancing out across the languages. 

The complexity measurement for each language was calculated from the 
tagged corpus data with a triplet for each word: the part-of-speech (UPOS); the 
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dependency relation (DEPREL); and the part-of-speech of that related word. 
Lexical information was discarded, as well as punctuation. The first 36,000 
dependencies of this type were considered in the corpus for each language, 
limited by the smallest corpus (Hungarian: 36,225 dependencies available).3 

Results (low to high complexity): Hindi (306); Slovenian (366); Bulgarian (374); Vietnamese 
(374); Polish (392); Italian (399); Urdu (406); Galician (411); Greek (419); Persian (448); 
Estonian (461); Norwegian (Bokmaal) (508); Norwegian (Nynorsk) (515); French (515); 
Portuguese (529); Danish (535); Swedish (537); Catalan (543); Slovak (544); Chinese (550); 
Serbian (564); Spanish (572); Afrikaans (576); Ukrainian (582); Russian (588); Arabic (598); 
Hungarian (606); Finnish (609); Czech (618); Basque (626); Latvian (643); Turkish (653); 
Hebrew (664); Romanian (703); Dutch (744); Croatian (749); English (763) 

Thus, based on this data alone, a linguist writing a grammar would have 
more constructions to explain for English than Hindi, and presumably some of 
those constructions would require unique explanations. These results must be 
interpreted tentatively as we have no independent metric to test their validity.4 

2.3. The Zipfian problem 

The available corpora are of limited size, and the difference between languages 
might be based on frequency distribution of dependency relationships rather 
than whether particular dependencies exist at all in the language, a problem 
exaggerated by varied text types in the data (from long paragraphs to 
abbreviated internet comments). We would hope that the results would be 
replicable with more, and larger data sets, but this is uncertain. As Zipf (1935) 
found for the distribution of lexical items, the distribution of syntactic 
constructions is logarithmic and biased toward the most frequent items (Köhler, 
2007).5 Looking at the the largest data set (Czech: 1.29 million dependencies), 
new unique dependency relationships are progressively rarer, but there is no 

                                                             
3 This translates to 3,280 sentences or 35,259 words for English, for example. The figures for the 

other languages vary, as there may be more or fewer dependencies per sentence in each language.  
4 Encouragingly, some of the closely related languages, such as the two varieties of Norwegian, are 

ranked similarly. Additionally, if we instead measure bigrams (part-of-speech pairs, based on 
adjacency in the text, still setting aside lexical information but now also dependency parsing), the 
results are statistically correlated with the dependency rankings (r2=0.11; p<.05), although the 
ranking of individual languages varies. Including lexical information eliminates that correlation 
(but results for lexical dependencies and lexical bigrams also appear similar to each other ). This 
suggests that a measurement of syntactic complexity (without influence of lexical density) would 
require at least a tagged corpus, but possibly not a dependency-parsed corpus. 

5 Another possible approach would be to consider only infrequent types, discarding information 
about the more frequent dependencies in the corpus data. However, because there are more 
infrequent than frequent constructions, the distribution are still broadly statistically similar. 
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indication that all of them have been found by the end of even this large corpus. 
Compared to the 618 unique dependency relationships among 36,000, there are 
1,538 in the full corpus of 1.29 million. At the very least, we must conclude that 
much larger corpora are required for representative measurements. 
 

 
Figure 1. Cumulative unique dependency relationships per total number in corpus (Czech). 

3. Typological considerations 

The top-down approach presented above can be contrasted with a bottom-up 
approach based on linguistic analysis of the features of individual languages. In 
this sense, we can apply the specific construction type discussed by Ross (2014), 
namely verbal pseudocoordination (PC, such as English go and get or try and 
do), where a dependency relationship between two verbs is indicated by an 
anomalous use of the coordinating conjunction and (which importantly would 
not be tagged as such in a corpus). Later typological surveys (Ross 2016, 2017) 
provide the relevant data for this comparison. As it is especially common in 
Europe, PC is found in most languages of this biased sample. (The 7 without PC 
are: Chinese, Dutch, French, Hindi, Slovenian, Urdu and Vietnamese.) A 
linguist describing the 30 languages with PC would need to explain this feature 
and any idiosyncrasies it has (see the arguments in Ross, 2014); the number of 
different PC constructions in each language could also be considered, ranging 
from just one to many types. Additionally, just as some languages have recently 
developed PC, Dutch (Van Pottelberge, 2002) and Chinese (Tsai, 2007) had PC 
historically, an apparent loss of complexity. However, PC has been functionally 
replaced by other syntactic constructions, such as infinitives in Dutch and Serial 
Verb Constructions (SVCs) in Chinese. In fact, SVCs should be similarly 
considered because they represent complex but unmarked relationships between 
verbs (Escure, 2009), and some languages have both PC and SVCs. As they are 
not a typical feature in Europe, SVCs are rare in the current sample, with 
extensive usage only in Chinese and Vietnamese. (Following and expanding on 
Ross et al. 2015, the other languages with limited usage of SVCs in the sample 
are Afrikaans, Arabic, Estonian, Hindi, Hungarian, Persian, Russian, Turkish, 
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and Urdu, and marginal usage in Basque and English). See Ross (forthcoming) 
for the distribution of SVCs, PC and related syntactic features. 

To determine the overall complexity of languages, many more features 
should be considered. A full study of this sort would require extensive 
documentation and linguistic analysis for each language in a sample. However, 
we can attempt to estimate the distribution based on available typological 
databases, such as the World Atlas of Language Structures (WALS: Haspelmath 
et al. 2005). In fact, Bentz et al. (2016) found strong correlations between 
several automated metrics and features from WALS, though they only 
considered morphological complexity.  Although WALS offers over 140 feature 
sets, only a small subset are relevant to measuring differential complexity cross-
linguistically. Among the syntactic features in WALS, most (such as word order 
features) represent variation but not one language having more properties than 
another; therefore, only 8 relevant features were selected: gender (30A); articles 
(37A/38A); case (49A/51A); having two basic word orders (81A/81B); passives 
(107A/108A); syntactic expression of negation (112A); syntactic expression of 
polar question (116A); and copula omission (120A). These were coded as binary 
features (1=presence; 0=absence), and also including the additional data for  PC 
and SVCs, estimated syntactic complexity was calculated as an average of these 
10 features. The full results are presented in the accompanying materials. 
However, this was found to be a relatively weak measure of syntactic 
complexity for several reasons: (1) the limited number of variables available; (2) 
the similar distribution of many of these features in the (mostly European) 
languages in the sample; and gaps in the data for some languages in WALS 
(Afrikaans, Galician, and Slovak should be removed for lack of data). 
Furthermore, this sort of large-scale typological database lends itself to 
widespread features, rather than any unique properties of individual languages, 
thus obscuring complexity, given that infrequent or unusual features will 
account for the majority of a native speaker’s knowledge, as discussed above. 
Therefore, specific annotation by experts of features in each language is desired. 

Finally, let us consider the possibility of measuring complexity based 
literally on the length of published descriptive grammars (number of pages), as 
mentioned metaphorically above. A ranking based on the most detailed available 
grammar for each language is presented in the accompanying materials. 

Unfortunately, but not surprisingly, no statistical correlation was found 
between any pair among the corpus-based dependency metric, the 10-feature 
WALS metric, or the page count of descriptive grammars. Whether there can be 
any correlation between bottom-up and top-down methods remains to be seen. 

30



  

References 

Bentz, C., Ruzsics, T., Koplenig, A., & Samardžić, T. (2016). A Comparison 
Between Morphological Complexity Measures: Typological Data vs. 
Language Corpora. In D. Brunato, F. Dell’Orletta, G. Venturi, T. François, 
& P. Blache (Eds.), Proceedings of the Workshop on Computational 
Linguistics for Linguistic Complexity (pp. 142–153). Osaka: COLING 2016 
Organizing Committee. http://aclweb.org/anthology/W16-41 

Chomsky, N. (1995). The Minimalist program. Cambridge, MA: MIT Press. 
Escure, G. (2009). Is verb serialization simple? Evidence from Chinese Pidgin 

English. In N. Faraclas & T. B. Klein (Eds.), Simplicity and Complexity in 
Creoles and Pidgins. London: Battlebridge. 

Gell-Mann, M. (1994). The quark and the jaguar: adventures in the simple and 
the complex. New York: W.H. Freeman & Co. 

Goldberg, A. E. (1995). Constructions: a construction grammar approach to 
argument structure. Chicago: University of Chicago Press. 

Haspelmath, M., Dryer, M. S., Gil, D., & Comrie, B. (Eds.). (2005). World Atlas 
of Language Structures. Oxford: Oxford University Press. http://wals.info/ 

Köhler, R. (2007). Quantitative Analysis of Syntactic Structures in the 
Framework of Synergetic Linguistics. In A. Mehler & R. Köhler (Eds.), 
Aspects of Automatic Text Analysis (pp. 191–209). Berlin: Springer. 

Ross, D. (2014). The importance of exhaustive description in measuring 
linguistic complexity: The case of English try and pseudocoordination. In F. 
J. Newmeyer & L. B. Preston (Eds.), Measuring Grammatical Complexity 
(pp. 202–216). Oxford: Oxford University Press. 

Ross, D. (2016). Between coordination and subordination: Typological, 
structural and diachronic perspectives on pseudocoordination. In F. Pratas, 
S. Pereira, & C. Pinto (Eds.), Coordination and Subordination: Form and 
Meaning — Selected Papers from CSI Lisbon 2014 (pp. 209–243). 
Newcastle upon Tyne: Cambridge Scholars Publishing. 

Ross, D. (2017). Pseudocoordinación del tipo tomar y en Eurasia: 50 años 
después [Pseudocoordination with take and in Eurasia: 50 years later]. 
Presented at Lingüística Coseriana VI, Lima, Peru. 

Ross, D. (forthcoming). Pseudocoordination, serial verb constructions and 
multi-verb predicates: The relationship between form and structure (Ph.D. 
dissertation). University of Illinois at Urbana-Champaign, Urbana, IL. 
Tsai, W.-T. D. (2007). Conjunctive Reduction and its Origin: A Comparative 

Study of Tsou, Amis, and Squliq Atayal. Oceanic Linguistics, 46(2), 585–
602. 

Van Pottelberge, J. (2002). Nederlandse progressiefconstructies met 
werkwoorden van lichaamshouding: specificiteit en geschiedenis. 
Nederlandse Taalkunde, 7(2), 142–174. 

Zipf, G. K. (1935). The psycho-biology of language: an introduction to dynamic 
philology. Boston: Houghton Mifflin. 

31



MORPHOSEMANTIC COMPLEXITY

Bill Thompson*1 and Gary Lupyan2, 1

*Corresponding Author: biltho@mpi.nl
1Language and Cognition Department, Max Planck Institute for Psycholinguistics

2Department of Psychology, University of Wisconsin-Madison

We describe morphosemantic complexity, a new measure of morphological
complexity based on traversal of semantic space. Imagine meaning as a multi-
dimensional space and the transition from lemma to wordform as a direction in
this space. We propose a formulation of morphological complexity as the vari-
ability among these traversals. As an example, consider the English past-tense
as the collection of difference vectors between lemmas and their inflected forms.
A past-tense paradigm showing a high degree of semantic regularity is one in
which the traversal from “walk”→ “walked” has a similar direction as the traver-
sal from “feel” → “felt” and “is” → “was”. That is, the variance between these
difference vectors is small. On our measure, the fact that some English words (e.g.
“feel”/”felt”, “is”/”was”) violate the usual English past-tense pattern is not rele-
vant. Rather, our measure picks up on the semantic “consistency” of inflectional
paradigms. Our results show that measuring morphological complexity in this
way provides strong correlations with corpus-based measures such as CWALS

(Bentz, Ruzsics, Koplenig, & Samardzic, 2016) and entropy-based Dstructure

(Koplenig, Meyer, Wolfer, & Mueller-Spitzer, 2017), but appears to also account
for unique variance, while offering additional advantages which we describe be-
low.

1. Method and Rationale

We obtained word-embeddings for the 37 languages listed in this task. The em-
beddings are 300-dimensional vectors derived from training a Skipgram model
on Wikipedia in each language. We used pretrained vectors made available by
Facebook Artificial Intelligence Research (Bojanowski, Grave, Joulin, & Mikolov,
2016). These vectors have the property that similar vectors generally correspond
to semantically similar words (Mikolov, Chen, Corrado, & Dean, 2013; Chen,
Peterson, & Griffiths, 2017; Nematzadeh, Meylan, & Griffiths, 2017; Hollis &
Westbury, 2016). Most relevant to our purposes is the ability to capture composi-
tional aspects of word meaning via numerical operations on the word vectors. A
canonical example is that the vector for “king” minus the vector for “man” plus the
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vector “woman” puts us in part of the semantic space closest to “queen” (Mikolov
et al., 2013). The vector operations can be applied to morphological transforma-
tions as well: the difference between “cats” and “cat”, added to “tree”, produces
a vector most similar to the word “trees”. Importantly, this analogy-type process
operates in semantic space rather than wordform space.

For each of the 37 languages, we obtained from the CoNLL-U annotations
form-lemma pairs for every token in each datafile. For all form-lemma pairs for
which we were able to obtain word vectors for both words, we subtracted the
lemma vector from the base-word vector producing a difference vector. When
form and lemma differ, the difference vector can be taken to represent the meaning
of the morphological transformation. When the stem and lemma were identical,
the difference vector is simply 0. Because our semantic vectors are linked to
string representations of words, we cannot distinguish parts of speech; “rain” (N)
and “rain” (V) would therefore be represented by the same vector.

Call the total collection of difference vectors for a given language its
difference-set. In a morphologically simple language, the difference-set will be
mostly vectors of zeros. As a result, we would expect less variance among vec-
tors in the difference set, and less absolute semantic volume (i.e. average distance
from zero). In a morphologically rich language, the difference-set will exhibit
both more variance and volume. The distance and variance measures can also
diverge. Figure 1 visualises these variables in three languages. Each arrow in
these figures corresponds to a single difference vector, drawn very faintly. After
projecting word vectors onto a two dimensional space, we plotted the angle and
distance of the traversal from lemma to wordform. In English, relatively little se-
mantic work in being done by morpholpogy (short arrows), and the traversals tend
to cluster into a small number of similar categories (shown by arrows that appear
dark, because they layer on top of eachother at similar angles). Turkish and Farsi
(Persian) both do lots of semantic work with morphology (long arrows), but lower
variance of angles in Farsi than Turkish suggests a a smaller number of semantic
transformations.

We obtained the difference-set for all 37 languages and computed several mea-
sures:

• Semantic Distance (All Tokens) & (Non-Identical Tokens): The total dis-
tance travelled between lemma and form (i.e. the sum of by-component
squared distances from zero) vectors among all unique word pairs, includ-
ing cases where lemma and form are the same word, or not, respectively.
This measure quantifies the amount of semantic work being done by mor-
phology.

• Semantic Variance (All Tokens) & (Non-Identical Tokens): The variance
among difference vectors for all unique word pairs, including cases where
lemma and form are the same word, or not, respectively.
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Figure 1. Distance and angle of all difference vectors (traversals between lemma and wordform) in
three languages, projected into two-dimensional vector space and arranged around a common origin.

2. Results

The supplementary materials for this article contain a dataset which lists, for each
language: the measures listed above plus C-WALS (Bentz et al., 2016) and D-
structure (Koplenig et al., 2017). For completeness, we also include the following
variables:

• Lemma = Wordform Proportion (Tokens) & (Types) — The proportion
of all attested & all unique words respectively whose lemma matches the
infected form.

• Number of Morphological Categories — The number of categories cata-
logued in the CoNLL-U files (e.g., Tense, Person, Aspect, Gender)

• Morphological Sum — The sum of the total values for each category, e.g.,
Feminine, Masculine, Past-tense, etc.

• GZIP-R — A measure of morphological complexity similar to Dstructure

(Koplenig et al., 2017): [1-size of gzipped plain-text]/[size of gzipped with
word-substituted text] where word-substituted text is created by replacing
each word with a random number of characters drawn from the frequency
distribution of characters in the language. This results in disrupting com-
pression gains that are based on reusing codes for stems in morphologically
derived words.

Figure 2 shows simple Pearson correlations between the variables. Several of
these are worth highlighting: a) the number of categories is a rather bad predic-
tor of all measures of morphological complexity because most of the languages
in this sample share most morphological categories, differing only in the number
of values per category; b) The proportion of word forms that are equal to their
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Figure 2. Correlation among our proposed measures, existing measures, and lower level morpholog-
ical summary statistics.

lemmas (both as raw wordforms and proportion of unique wordforms) correlates
to a surprising extent with previously published WALS-based measure (CWALS)
and entropy-based measures (Dstructure), as well as our own entropy-based mea-
sure (GZIP-R); c) both our semantic distance and semantic variance measures are
strongly correlated with CWALS , Dstructure and GZIP-R. Table 1 shows a subset
of these measures for the ten most and least complex langauges, as judged by our
Semantic Distance (All Tokens) measure.

To check whether the high correlations between morphosemantics and exist-
ing complexity norms are confounded by variables such as Lemma = Wordform,
we conducted a series of multiple regressions where these variables are partialed
out. Details of these results are presented in the supplemantary materials. Both
Semantic Distance (All Tokens) and Semantic Variance (All Tokens) are indepen-
dently predictive of both CWALS and Dstructure, at significance levels < .01,
even when controlling for the morphological measures we extracted from the
CONLL-U parse.

As an initial test of the kind of small differences in complexity our semantic-
distance measures is able to detect, we examined the closely-related languages
Bokmål and Nynorsk (we also studied Serbian/Croatian, and found similar sub-
tleties). Bokmål (lit. Book tongue) and Nynorsk (lit. New Norwegian) are two
standardized forms of written Norwegian. Bokmål is more common, being used
by about 87% of the population and, of the two varieties, has been strongly influ-
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Language Semantic Dist.
(All Tokens)

Semantic Var.
(All Tokens) GZIP-R D struct C wals

Hebrew 35.54 24.86 0.24 0.52 0.53
Arabic 33.86 21.85 0.21 0.57 0.80
Persian 23.03 18.82 0.17 0.36 0.52
Turkish 21.14 20.44 0.22 0.60 0.78
Finnish 18.46 17.86 0.21 0.43 0.48
Estonian 17.89 17.20 0.17 0.41 0.62
Latvian 14.03 13.55 0.20 0.45 0.52
Serbian 13.49 12.98 0.17 0.37 0.44
Russian 12.96 12.30 0.27 0.42 0.45
Greek 12.93 12.20 0.22 0.32 0.45

...
...

...
...

...
...

Swedish 7.73 7.54 0.18 0.21 0.33
Italian 7.66 7.38 0.11 0.31 0.38

Portuguese 6.23 5.95 0.14 0.33 0.45
French 6.11 5.85 0.13 0.29 0.43
Danish 6.02 5.90 0.13 0.26 0.39
Catalan 5.83 5.62 0.13 0.35 0.23

Urdu 5.12 5.09 0.12 0.25 0.36
Dutch 4.87 4.81 0.13 0.27 0.33
Hindi 4.00 3.96 0.15 0.25 0.53

Afrikaans 3.89 3.84 0.13 0.19 0.12
English 3.47 3.41 0.10 0.19 0.33

enced by Danish. Nynorsk is a minority form used by 12.5% of Norwegians has
resisted Danish influence to a greater extent. The treebanks for the two varieties
are nearly the same size and show almost identical categories and values. Bokmål
has two more values (reflexives and a passive voice) and so on this measure may
be viewed as being slightly more complex (though the lack of reflexives and pas-
sive in Nynorsk appears to be an inconsistency in treebank coding). The greater
complexity of Bokmål is also supported by Koplenig’s entropy-based measure of
structural complexity of bible translations (Dstructure Bokmål = .24; Dstructure

Nynorsk=.22), as well as our own entropy-based estimate. In contrast, according
to the morphosemantic complexity measure we compute here, Bokmål is simpler;
it has lower semantic variance (i.e., having more semantically consistent morpho-
logical paradgims): Bokmål = 10.65, Nynorsk=14.24. Consistent with Bokmål
being strongly influenced by Danish, its semantic variance is very close to that of
Danish (10.81).
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3. Future Directions

The work described here is preliminary. We are beginning to investigate whether
it is possible to derive a similar measure from plain-text by sampling words in a
corpus at a fixed edit-distances apart and computing their semantic distances, and
variance among their distances. We are also investigating the use of morphose-
mantics to detect morphological paradigms without linguistic annotation, i.e., in a
purely empirical way, by performing cluster-analysis of difference vectors.
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1. Introduction

According to psychological research by Miller (1956), human memory is

constrained to 7±2 elements. This cognitive constraint has an influence on

natural languages at the level of syntax. Yngve (1960) proposed the notion of

depth in his model, which makes it possible to model the grammar of the

language by considering short-term memory. Nowadays, treebank resources

make it possible to measure language performance on real data. Liu (2008)

measured the dependency distance/length, which is the linear distance between a

governor and a dependent, using dependency treebanks, and showed that the

dependency distance has a tendency to be minimized (see also Tesnière, 1959:

chapter 7; Futrell et al., 2015). Another typical question concerning the

complexity of syntactic and cognitive ability concerns the limitation on the level

of center-embedded constructions. Miller and Chomsky (1963) defined center-

embedded constructions as a “nesting of dependencies, which occurs when X is

embedded in another constituent Y, with material in Y to both the left and right

of X,” and remarked that increasing the levels of center-embedding makes the

sentence incomprehensible. According to the psycholinguistic research by Lewis

(1996), an English sentence has two levels of center-embedded clauses at most.

In Japanese the total number can reach three (Lewis, 1996). This syntac-

tic limitation is hypothesized to be related to the constraints of short-term mem-

ory. Kahane et al. (2017) considered the dependency flux, which is the 

set of dependencies linking a word on the left with a word on the right in 

a given position in the text and computed the flux weight, i.e. the maximum 

number of disjoint dependencies in the flux. As they showed, the flux 

weight, which measures the level of center-embedding constructions, is lim-

ited to 5 in the 70 treebanks of UD 2.0.
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The dependency length carries only linear information and does not make it 

possible to measure the complexity of the configuration of dependencies, while 

the flux weight only evaluates the shape of the configuration of dependencies, 

without considering whether the dependencies in the configuration are long or 

short.  We therefore propose a combined weight measure, in order to account for 

these two measurements at the same time. The calculation of dependency length, 

flux weight and combined weight will be presented in the next section. 

 

2. Dependency flux 

2.1. Flux size and flux weight 

 

 

Figure 1. A dependency tree from UD-English-Original, with three positions considered 

According to Kahane et al. (2017), dependency flux is the set of dependencies 

linking a word on the left with a word on the right in a given position. In Figure 

1, three examples of flux positions are indicated by a vertical line: position 1 

(opinion, piece), position 2 (the, implications), and position 3 (Arafat, ’s). The 

flux size is the number of dependency links crossing the position. For position 1, 

we have two links, labeled nmod:poss and compound, that link a word to the left 

and a word to the right and the flux size is 2; for position 2, the flux size is 4; for 

position 3, the flux size is 6. 

A set of dependencies is said to be disjoint if the dependencies do not share 

any vertex. The number of disjoint dependencies measures the center-

embedding level (Kahane et al., 2017). For instance in position 2, there are two 

disjoint dependencies, [appeared -nsubj-> piece] and [implications -case-> on], 

which do not share any vertex, and represent exactly a center-embedded 

construction from the point of view of constituency analysis: [piece [on the 

implications] appeared].  I n position 3, we find a set of four disjoint 

dependencies: [appeared -nsubj-> piece], [implications -nmod-> Qaeda], 

[passing -case-> of] and [Arafat -case-> ’s]. In this position, we find a more 

2 3 1 
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complicated center-embedded construction: [piece on the [implications [of 

[Arafat ’s] passing] for Qaeda] appeared]. The flux weight is the size of the 

largest disjoint sub-flux. For position 1 the weight is 1, 2 for position 2, 4 for 

position 3. 

2.2. Granularity 

Figure 2. Aggregated tree, tokens in parenthesis are ignored. 

At the modeling level, functional relations do not have a unified behavior in 

every treebank, and some of them are language specific relations. For example, 

the relation clf (classifier) exists in only a few languages, such as Chinese, and 

can form an additional disjoint dependency in comparison with other languages. 

It is possible to adjust the granularity of the syntactic analysis in order to make 

the different treebanks more comparable, for example by keeping only the 

content words and eliminating relations of the kind: auxiliary, case, conjunction, 

non-personal relations such as expletives, determiners, and parataxis. 

This gives us an aggregated tree, such as the one in Figure 2. The three 

positions considered in Figure 1 are still marked by a vertical line. In position 1, 

there remains only one relation in the flux. In position 2, there are no longer any 

disjoint dependencies. The flux weight in position 1 and position 2 is now 1. For 

position 3, we have 3 disjoint dependencies, [appeared -nsubj-> piece], 

[implications -nmod-> Qaeda] and [passing -nmod :poss-> Arafat] and the flux 

weight is then 3. 

 

3. Dependency flux combined with dependency length 

Our hypothesis of the complexity for sentence processing considers two aspects. 

On the one hand, the complexity depends on the number of disjoint 

dependencies that we measure by flux weight; on the other hand, it depends on 

the dependency length (modulo granularity). Thus, by combining the length of 

dependencies and the flux weight, we introduce a new measure, which we call 

the combined weight of the flux. We would like to look at how the combined 

1 2 3 
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weights behave among the treebanks, as well as to study the characteristics of 

this new measure. 

The combined weight in a given position is the sum of the dependency 

length of the longest disjoint dependencies. In the aggregated tree of Figure 2, 

for position 1, we have only one dependency, the length of which is 1, so the 

combined weight is Wc=1; for position 2, Wc=5; for position 3, Wc= 9 = 5 

[appeared-nsubj->piece] + 3 [implications-nmod->Qaeda] + 1 [passing-

nmod:poss->Arafat]. 

 

3. Results and discussion 

3.1.  Granularity 

By calculating the flux weight of all inter-word positions for every treebank, we 

found that the maximum weight varies between 3 and 5 in the model of 

aggregated trees. It is 3 for Vietnamese and Slovak, 10 languages have a 

maximum weight of 5 and the other 25 treebanks have a flux weight of 4. In 

comparison with the original treebanks, where the maximum weight varies 

between 4 (4 treebanks) and 6 (12 treebanks), our model of aggregated trees 

brings the maximum weight of different treebanks closer. We also obtain the 

same result for the average weight. 

3.2. Combined weight 

As shown in Figure 3, the average weight of aggregated trees (AT) is stable and 

is more universal, because it only considers the center-embedding levels. The 

average combined weight of aggregated trees (AT) shows slightly the same 

trend, but it accentuates the differences among the treebanks. The combined 

weight carries more information about syntactic complexity. 

The dependency length takes linear information into account, is correlated 

with sentence length, and is sensitive to genre (Jiang & Liu, 2015). As we lack 

information about genre, we cannot determine whether this difference in 

combined weight is due to different types of languages or to different genres. 
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Figure 3. Average combined weight of aggregated trees (AT) and average weight of 

aggregated trees (AT) in 37 languages. (For more information see the supplementary 

materials.) 
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