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What is Language?
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Definition
(Usage-Based)

From the usage-based
perspective language is
ultimately a mapping from
phonetic shapes (or hand
shapes in sign language, or
graphemes in writing) to
semantic or pragmatic
context. The strength of this
mapping is determined by
the frequency of
co-occurrence.

Bybee (2006). From usage to grammar: The
mind’s response to repetition.
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Word Frequency Distributions
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Hawaiian (haw)
Inupiatun (esk)

Hawaiian (haw)

40001001 O ke kuauhau na ka hanauna o
Iesu Kristo , ka mamo a Davida , ka mamo
a Aberahama.

40001002 Na Aberahama o Isaaka ; na
Isaaka o Iakoba ; na Iakoba o Iuda a me
kona poe hoahanau;

[...]

Iñupiatun (esk)

40001001 Uvva ukua aglang ich sivulliang
iñ Jesus Christ-ng um , kinguviang upluni
David-miñ Abraham-miñl.u .

40001002 Abraham aapagigaa Isaac-ng
um , Isaac-li aapagigaa Jacob-ng um ,
Jacob-li aapagigaa Judah-ng um
aniqataiñl.u .

Mayer and Cysouw (2014). A massively parallel Bible corpus.
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Real World Salience↔Word Frequencies

.... Matterhorn ... Matterhorn ... Bietschhorn ... Jungfrau ... Matterhorn

... Pilatus ... Matterhorn ... Finsteraarhorn ... Bietschhorn ... Matterhorn

... Finsteraarhorn ... Matterhorn ... Matterhorn ... Jungfrau ...
Bietschhorn ... Matterhorn ... Matterhorn ... Bietschhorn
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Summary

Factors influencing Word Frequency Distributions:
I Lexicon
I Morphology
I Writing Systems
I Translation/Content
I Real World Salience
I etc.

Methodological Question
How can we measure the differences in Frequency
Distributions?
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Type-Token Ratio
(TTR)

TTR = V∑V
i=1 fi

,

I V: set of unique types
(vocabulary ), e.g.
V = {A,a,b, . . . }, with
|V| = V ,

I V : number of character
types,

I fi : Token frequency of
given type xi .

Example
All human beings are born free and

equal in dignity and rights

char.types freq
a 5
A 1
b 2
d 3
e 5
f 1
g 3
... ...

TTR = 19
51 = 0.37

word.types freq
All 1
human 1
beings 1
are 1
born 1
free 1
and 2
... ...

TTR = 11
12 = 0.92
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Zipf’s Law (of Word Frequencies)

Word Rank Freq Char
the 1 12539 3
and 2 9964 3
of 3 7459 2
to 4 7317 2
in 5 3985 2
you 6 3747 3
for 7 3014 3
is 8 2957 2
he 9 2925 2
a 10 2862 1
. . . . . . . . . . . .
work–then 2742 1 10
world-rulers 2743 1 12
worm 2744 1 4
wormwood 2745 1 8
wounding 2746 1 8
writer 2747 1 6
writers 2748 1 7
zarephath 2749 1 9
zenas 2750 1 5

Another (more common)
formulation of the law:

f (w) ∝ 1
rα

(1)

The α-paramter is the slope in
log-log space (i.e. when both the
ranks and frequencies are log
transformed). Zipf assumed that
α ∼ 1 holds across languages.
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Frequency Distributions

Bentz (2018), p. 51.

Methodological Question

How can we measure the differences in Frequency Distributions?
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Problems
Parametric models
such as Zipf-Mandelbrot
(ZM) require complicated
fitting procedures which
can fail for particular
kinds of data (e.g.
uniform distribution).

Some non-parametric
methods (e.g.
TTR-based) fail to
distinguish certain types
of distributions (e.g.
uniform vs. non-uniform
in this example).

Bentz (2018), p. 52.
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https://www.youtube.com/watch?v=CCrpgUM_rYc (5:30)
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Information Content
(Surprisal)

The information content or
surprisal measures how
“suprised” we are to encounter a
certain character/word. If its
probability is low we are more
surprised to encounter it.

I(x) = − log2 p(x) = log2
1

p(x),

I x : one particular type,

I p(x): probability of x ,

I fi : token frequency of a
given type xi .

Example
All human beings are born free and

equal in dignity and rights

char.types freq
a 5
A 1
b 2
d 3
e 5
f 1
g 3
... ...

Î(a) = − log2 p̂(a) =
− log2

5
51 = 3.35 bits

word.types freq
All 1
human 1
beings 1
are 1
born 1
free 1
and 2
... ...

Î(and) =
− log2 p̂(and) =
− log2

2
12 = 2.58 bits

Note: This example uses the so-called
maximum likelihood (ML) estimator for
probabilities. This gives the estimated p̂
and Î.
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Unigram Entropy
The unigram entropy is the
average information content
of all types.

H(X ) = −
∑V

i=1 p(xi) log2 p(xi),

I X: random variable drawn
from the set of types (i.e.
V),

I V: number of types (as
before).

Shannon, Claude E. (1948). A
mathematical theory of
communication.

Cover & Thomas (2006). Elements of
information theory, p. 14.

Example (Characters)
All human beings are born free and

equal in dignity and rights

unit char.freq
a 5
A 1
b 2
d 3
e 5
f 1
... ...

Ĥ(X ) = −( 5
51 log2(

5
51) +

1
51 log2(

1
51) + . . . ) ∼

3.97 bits/char

Note: This example uses the so-called
maximum likelihood (ML) estimator for
probabilities. This gives the estimated p̂
and Ĥ.
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Exercise
Take the picture below and calculate its entropy (assuming that white
square = 0 and black square = 1). Do the same for the word “square”.
Now go to a text to binary converter and convert “square” into binary
(https://cryptii.com/pipes/text-to-binary). What is the difference
between the word “square” and this picture of squares from an
information theoretic perspective?

square
17 | Language Evolution, WiSe 2023/2024, Bentz c© 2012 Universität Tübingen
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Further Entropic Measures
There is a whole range of “entropic” measures derived within Standard Information
Theory. Some of the most well-known ones are here given for completeness.

Information Content (Surprisal):
I(x) = − log2 p(x) (2)

Entropy:
H(X ) = −

∑
x∈X

p(x) log2 p(x) (3)

Joint Entropy:
H(X ,Y ) = −

∑
x∈X

∑
y∈Y

p(x , y) log2 p(x , y) (4)

Conditional Entropy:
H(Y |X ) = −

∑
x∈X

p(x)
∑
y∈Y

p(y |x) log2 p(y |x) (5)

Entropy Rate:

H(X ) = lim
N→∞

1
N

H(X1,X2, . . . ,XN), (6)

Mutual Information:
I(X ;Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ) (7)

Relative Entropy (Kullback-Leibler Divergence):

D(p||q) =
∑
x∈X

p(x) log2
p(x)
q(x)

. (8)
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Probabilities
For all information-theoretic measures (not only the entropy) a crucial
ingredient are the probabilities of information encoding units:

p(x), p(x, y), p(y|x)

Information Content (Surprisal)

I(x) = − log2 p(x) (9)

Entropy
H(X ) = −

∑
x∈X

p(x) log2 p(x) (10)

Joint Entropy

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(x , y) (11)

Conditional Entropy

H(Y |X ) = −
∑
x∈X

p(x)
∑
y∈Y

p(y |x) log2 p(y |x) (12)
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Probability Estimation
The simplest, most straightforward, but also most naive estimator for
probabilities is the so-called Maximum Likelihood (ML) or plug-in
estimator, i.e. taking the relative frequency fi of a unit xi as its probability
such that

p̂(xi) =
fi∑V
i fi

, (13)

where i is a running index, and V is the alphabet size.

.... Matterhorn ... Matterhorn ... Bietschhorn ... Jungfrau ... Matterhorn

... Pilatus ... Matterhorn ... Finsteraarhorn ... Bietschhorn ... Matterhorn

... Finsteraarhorn ... Matterhorn ... Matterhorn ... Jungfrau ...

p̂(Matterhorn) =
7

14
= 0.5 (14)

Note: The hat above the probability symbol p̂ indicates that we are estimating the
probability, rather than pre-defining it.
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Estimation Problems in Natural Languages

1. Unit Problem
What is an information encoding “unit” in the first place
– and how does the choice effect the results?

2. Sample Size Problem
How do estimations change with sample sizes?

3. Interdependence Problem
What is the “real” probability of “units” in natural
language, given that they are interdependent?

4. Extrapolation Problem
Do estimations extrapolate across different texts, and
corpora?
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Problem 1: Information Encoding Units
In the case of natural language writing, the “units” of information
encoding could be characters, syllables, morphemes, orthographic
words, phrases, sentences, etc. That is, the “alphabet” over which we
estimate information-theoretic measures can differ vastly.

All human beings are born free and equal in dignity and rights

UTF-8 characters: A = {A,a,b,d ,e, f ,g,h, i , l , . . . }
Character bigrams: A = {Al , ll , lh,hu,um,ma,an,nb,be,ei , in,ng, . . . }
Syllables: A = {All ,hu,man,be, ings,are,born, . . . }
Morphemes: A = {All ,human,be, ing, s,are,born, . . . }
Orthographic words: A = {All ,human,beings,are,born, . . . }
Word bigrams: A = {All human,human beings,beings are,are born, . . . }
etc.
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Problem 2: Sample Size
The probabilities of characters, syllables, words, etc. depend on the
corpus size, and so do the estimations of information-theoretic
measures.
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Figure. Frequency distributions and word type entropies for the English UDHR
according to the first 10 and 100 word tokens.
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Possible Solution for Problem 2
Get better entropy estimators (e.g. Hausser & Strimmer 2014 via R
package entropy ), and estimate the text size for which the entropy
stabilizes.
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Bentz et al. (2017). The entropy of words – learnability and expressivity across more
than 1000 languages.
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Problem 3: Interdependence of Units
In the case of natural language writing, characters, words, phrases etc.
are not identically and independently distributed variables (i.i.d).
Instead, the co-text and context results in systematic conditional
probabilities between units:

p(y |x) = p(x , y)
p(x)

(15)

Preamble Whereas recognition of the inherent dignity and

of the equal and inalienable rights of all members of the

human family is the foundation of freedom, justice and peace

in the world [...]

p̂(the) = 5
32 ∼ 0.16,

p̂(the|of ) = p(of ,the)
p(of ) =

3
31
5
32
∼ 0.6.

Note: There are 32 orthographic word tokens, and 31 orthographic word bigram tokens in this example. We here take a
simple ML estimate of unigram and bigram probabilities.
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Possible Solution for Problem 3

I Estimate n-gram (bigram, trigram, etc.) entropies
instead of unigram entropies. However, this soon
requires very big corpora as n increases. This is a
fundamental problem often referred to as data sparsity.

I Estimate the entropy rate h, which reflects the growth
of the entropy with the length of a string.

Kontoyiannis et al. (1998). Nonparametric entropy estimation for stationary processes
and random fields, with applications to English text.

Cover & Thomas (2006). Elements of information theory, p. 74.

Gao, Kontoyiannis, & Bienenstock (2008). Estimating the entropy of binary time series:
Methodology, some theory, and a simulation study.

Lesne et al. (2009). Entropy estimation for very short symbolic sequences.

Gutierrez-Vasques & Mijangos (2020). Productivity and predictability for measuring
morphological complexity.
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Problem 4: Extrapolation
When estimating information-theoretic measures for natural languages,
we can only use a snapshot of the overall language production (of all
speakers and writers). The question then is to what extend our results
extrapolate beyond our limited sample. A possible solution to this
problem is to compare estimations between different corpora.

Bentz (2018). Adaptive languages: An information-theoretic account of linguistic
diversity, p. 108.
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Methods for Probability Estimation

I Frequency-Based: i.e. counting frequencies in corpora
(and smoothing the counts with more advanced
estimators).

I Language Models: train (neural) language models on
texts, and get transition-probability estimates from
these.

I Experiments with Humans: have humans predict the
next character/word in a sentence, and calculate the
probabilities from their precision.

30 | Language Evolution, WiSe 2023/2024, Bentz c© 2012 Universität Tübingen



Recap

Section 1:
Information-
Theoretic
Measures

Section 2:
Estimation
Problems

Section 3:
Estimation
Methods

Section 4:
Information and
Meaning

Summary

References

Frequency-Based Estimation
We can estimate probabilities of units (here orthographic words) from
written texts/corpora via the ML estimator (relative frequencies) or less
biased estimators (here James-Stein Shrinkage estimator).

Bentz (2018). Adaptive languages, p. 88.
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Language Models
Useful tool in NLP for estimating the probability of sequences

I For example, we can use them for calculating the probability of a
sentence in a language (based on a text corpus)

I Many applications in NLP

We want to calculate: P(w1,w2, . . . ,wn)

See also https://github.com/christianbentz/Workshop_DGfS2022
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Experiments with Humans
“A new method of estimating the entropy and redundancy of a language
is described. This method exploits the knowledge of the language
statistics possessed by those who speak the language, and depends on
experimental results in prediction of the next letter when the preceding
text is known.”

Shannon (1951). Prediction and entropy of printed English.
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Experiments with Humans
“Shannon’s experiment, however, used only one subject, bringing into
question the statistical validity of his value of h = 1.3 bits per character
for the English language entropy rate. [...] Our final entropy estimate
was h ∼ 1.22 bits per character.”

Ren, Takahasi, & Tanaka-Ishii (2019). Entropy rate estimation for English via a large
cognitive experiment using Mechanical Turk.
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Information 6= Meaning

Article 1

All human beings are born free and equal in dignity

and rights. They are endowed with reason and

conscience and should act towards one another in a

spirit of brotherhood.

Universal Declaration of Human Rights (UDHR) in English

Raeiclt 1

Rll humrn btings rat boan fatt and tqurl in digniey

rnd aighes. Ehty rat tndowtd wieh atrson rnd

conscitnct rnd should rce eowrads ont rnoehta in r

spiaie of baoehtahood.

Universal Declaration of Human Rights (UDHR) in ???
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Information and Meaning

[...] two messages, one of which is heavily
loaded with meaning and the other which is
pure nonsense, can be exactly equivalent,
from the present viewpoint, as regards
information. It is this, undoubtedly, that
Shannon means when he says that “the
semantic aspects of communication are
irrelevant to the engineering aspects.” But
this does not mean that the engineering
aspects are necessarily irrelevant to the
semantic aspects.

Shannon & Weaver (1949). The mathematical
theory of communication, p. 8.
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Entropy and Mutual Information

The entropy could be seen as a necessary but not
sufficient condition for meaning encoding. That is, the
entropy of signals is an upper bound on the mutual
information between signals (S) and referents/meanings
(R), i.e.

H(S) ≥ I(S,R) (16)

Ferrer-i-Cancho & Diaz-Guilera (2007). The global minima of the communicative
energy of natural communication systems.
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Example: Bird Song and Human Language

rn rn kd rq rp km jx km rn rn kd rq rp ro as rr rs rt

ls as am rn rn kd rq rp ro ro lo rn rn kd rq rp as rr

rs rt rh rn rn tw nn ir rh tx rn lo rs rt rh

Ĥ(X ) ∼ 3.1 bits/char
Ĥ(X ) ∼ 3.9 bits/char.string

All human beings are born free and equal in dignity

and rights. They are endowed with reason and

conscience and should act towards one another in a

spirit of brotherhood

Ĥ(X ) ∼ 4.1 bits/char
Ĥ(X ) ∼ 4.5 bits/char.string
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Implication: Bird Song and Human Language

Human language (English UDHR) has a higher entropy, i.e.
average information content, for both single characters and
strings of characters (delimited by white spaces) than bird
song (of this particular example).

While we do not strictly know the meaning(s) this bird song
encodes, we know that it cannot encode more meanings
(unambiguously) than the English UDHR passage.
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Summary

I There is a range of (interrelated) information-theoretic
measures: information content (surprisal), entropy, joint
entropy, conditional entropy, relative entropy, etc.

I The probabilities of units are a fundamental ingredient
to any estimation of information-theoretic measures.

I There are fundamental problems with estimations of
probabilties relating to: the choice of units, sample
sizes, interdependencies between units, and
extrapolation of results.

I While it is true that information 6= meaning, the
entropy of a signal system can be seen as the upper
bound on how much mutual information there can be
between signals and the meanings they encode.
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