

Modern Human Origins

Hugo Reyes-Centeno, Yonatan Sahle, Christian Bentz

10 December 2018, Lecture 7

EBERHARD KARLS

UNIVERSITÄT

TÜBINGEN

Species concepts and definitions How do we define a species and how does this relate to modern humans?

Genomics of modern human origins What does (ancient) DNA tell us about the origins and evolution of modern humans?

Models of anthropogeny What model of modern human origins is best supported with the current fossil and genomic evidence?

Modern human dispersals When, how, and why did anatomically modern humans disperse out of Africa?

Nielsen et al 2017

Species concepts and definitions How do we define a species and how does this relate to modern humans?

Genomics of modern human origins What does (ancient) DNA tell us about the origins and evolution of modern humans?

Models of anthropogeny What model of modern human origins is best supported with the current fossil and genomic evidence?

Modern human dispersals When, how, and why did anatomically modern humans disperse out of Africa?

Stringer 2001

Species concepts and definitions How do we define a species and how does this relate to modern humans?

Genomics of modern human origins What does (ancient) DNA tell us about the origins and evolution of modern humans?

Models of anthropogeny What model of modern human origins is best supported with the current fossil and genomic evidence?

Modern human dispersals When, how, and why did anatomically modern humans disperse out of Africa?

Species concepts and definitions How do we define a species and how does this relate to modern humans?

Genomics of modern human origins What does (ancient) DNA tell us about the origins and evolution of modern humans?

Models of anthropogeny What model of modern human origins is best supported with the current fossil and genomic evidence?

Modern human dispersals When, how, and why did anatomically modern humans disperse out of Africa?

Species concepts and definitions		Allopatric	Peripatric	Parapatric	Sympatric
How do we define a species and how does this relate to modern humans?	Original population	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Genomics of modern human origins What does (ancient) DNA tell us about the origins and evolution of modern humans?	Initial step of speciation	Barrier formation	New niche entered	New niche entered	Genetic polymorphism
Models of anthropogeny What model of modern human origins is best supported with the current fossil and genomic evidence?	Evolution of reproductive isolation	In isolation	In isolated niche	In adjacent niche	Within the population
The serial founder effect What are the genetic signatures of the human expansion out of Africa?	species after equilibration of new ranges			I. Karonen	2006

This lecture:

- The serial founder effect What are the genetic signatures of the human expansion out of Africa?
- Neutral and adaptive evolution What is the difference between evolution by chance and evolution under selection?
- **Co-evolution**
 - Do the genotype and phenotype coevolve?

Neutral & adaptive evolution

What is the difference between evolution by chance and evolution under selection?

- Serial founding effect (or cascading bottlenecks)
 - 1. Decreasing intra-population diversity with geographical distance from Africa

Henn et al. 2012

- Serial founding effect (or cascading bottlenecks)
 - 1. Decreasing intra-population diversity with geographical distance from Africa
 - 2. Increasing inter-population diversity between populations with geographical distance separating them

Henn et al. 2012

- Serial founding effect (or cascading bottlenecks)
 - 1. Decreasing intra-population diversity with geographical distance from Africa
 - Increasing inter-population diversity between populations with geographical distance separating them

Great circle geographic distance using waypoints [km]

Ramachandran et al. 2005

- Serial founding effect (or cascading bottlenecks)
 - 1. Decreasing intra-population diversity with geographical distance from Africa
 - Increasing inter-population diversity between populations with geographical distance separating them

Manica et al. 2007; Betti et al. 2011

- Serial founding effect (or cascading bottlenecks)
 - 1. Decreasing intra-population diversity with geographical distance from Africa
 - 2. Increasing inter-population diversity between populations with geographical distance separating them

Atkinson 2011; Hunley et al. 2012

- Serial founding effect (or cascading bottlenecks)
 - 1. Decreasing intra-population diversity with geographical distance from Africa
 - 2. Increasing inter-population diversity between populations with geographical distance separating them

Lycett & von Cramon-Taubadel 2008

Modes of evolution

Neutral evolution (or drift) refers to changes in the genotype and phenotype that refer to chance events or <u>stochastic processes</u> (e.g. random mutations)

US Department of Energy

Modes of evolution

- Neutral evolution (or drift) refers to changes in the genotype and phenotype that refer to chance events or <u>stochastic processes</u> (e.g. random mutations)
- Adaptive evolution (or selection) refers to changes in the genotype and phenotype that are due to non-random or <u>non-stochastic</u> processes (e.g. environmental)

US Department of Energy

Modes of evolution

- Neutral evolution (or drift) refers to changes in the genotype and phenotype that refer to chance events or <u>stochastic processes</u> (e.g. random mutations)
- Adaptive evolution (or selection) refers to changes in the genotype and phenotype that are due to non-random or <u>non-stochastic</u> processes (e.g. environmental)

Note: changes in genotype and phenotype can occur during an organisms lifetime, but they will not be inherited to the next generation unless they occur along the germ line or an epigenetic process.

US Department of Energy

Rogers Ackermann & Cheverud 2004

- Adaptive evolution is thought to have played an important role in early human evolution
- Netural evolution is thought to play the primary role in recent human evolution

Weaver et al 2007

- Adaptive evolution is thought to have played an important role in early human evolution
- Netural evolution is thought to play the primary role in recent human evolution
 - Direct comparison of netural genomic and phenotypic variation between populations

US Department of Energy; Reyes-Centeno et al 2017

- Adaptive evolution is thought to have played an important role in early human evolution
- Netural evolution is thought to play the primary role in recent human evolution
 - Direct comparison of netural genomic and phenotypic variation between populations

	AU	CA	EA	JP	ME	NE	NG	NI	SA	SI	
AU	0										
СА	0.372	0						- /			
EA	0.558	0.524	0				3		-0-	10	-)
JP	0.323	0.100	0.572	0				500	1 Star	L Col	27
ME	0.365	0.572	0.637	0.554	0					C.S.	K
NE	0.674	0.516	1.299	0.476	0.737	0					i de la constante da la consta
NG	0.142	0.359	0.724	0.389	0.304	0.625	0				
NI	0.355	0.167	0.379	0.200	0.516	0.585	0.371	0			
SA	0.356	0.449	0.334	0.450	0.497	0.724	0.419	0.329	0		
SI	0.400	0.221	0.495	0.294	0.402	0.582	0.433	0.088	0.393	0	
	AU	СА	EA	JP	ME	NE	NG	NI	SA	SI	
AU	0										
AU CA	0 0.110	0				F		-			
AU CA EA	0 0.110 0.191	0 0.129	0			F	S	Γ	27	06	
AU CA EA JP	0 0.110 0.191 0.144	0 0.129 0.031	0	0		F	ST	T K	22	0	
AU CA EA JP ME	0 0.110 0.191 0.144 0.079	0 0.129 0.031 0.145	0 0.175 0.226	0	0	F	= S7		200 - 100 -	- 10	
AU CA EA JP ME NE	0 0.110 0.191 0.144 0.079 0.119	0 0.129 0.031 0.145 0.053	0 0.175 0.226 0.158	0 0.173 0.062	0	0	S7		Sec. 12	10 A	
AU CA EA JP ME NE NG	0 0.110 0.191 0.144 0.079 0.119 0.092	0 0.129 0.031 0.145 0.053 0.111	0 0.175 0.226 0.158 0.200	0 0.173 0.062 0.136	0 0.159 0.107	0	S7		States 3	e los	
AU CA EA JP ME NE NG	0 0.110 0.191 0.144 0.079 0.119 0.092 0.105	0 0.129 0.031 0.145 0.053 0.111 0.022	0 0.175 0.226 0.158 0.200 0.121	0 0.173 0.062 0.136 0.071	0 0.159 0.107 0.139	0 0.115 0.067	0 0.114	0	Section 200		
AU CA EA JP ME NE NG NI SA	0 0.110 0.191 0.144 0.079 0.119 0.092 0.105 0.191	0 0.129 0.031 0.145 0.053 0.111 0.022 0.135	0 0.175 0.226 0.158 0.200 0.121 0.006	0 0.173 0.062 0.136 0.071 0.175	0 0.159 0.107 0.139 0.219	0 0.115 0.067 0.160	0 0.114 0.199	0 0.127	0		

- Adaptive evolution is thought to have played an important role in early human evolution
- Netural evolution is thought to play the primary role in recent human evolution
 - Direct comparison of netural genomic and phenotypic variation between populations

Leinonen et al 2013

- Adaptive evolution is thought to have played an important role in early human evolution
- Netural evolution is thought to play the primary role in recent human evolution
- □ Adaptation still plays an important role
 - e.g. adaptation to high altitude environments: independent (convergent) evolution and possible hominin introgression in Tibet

Bingham & Lee 2014

- Adaptive evolution is thought to have played an important role in early human evolution
- Netural evolution is thought to play the primary role in recent human evolution
- □ Adaptation still plays an important role
 - e.g. adaptation to high altitude environments: independent (convergent) evolution and possible hominin introgression in Tibet

	Adaptive evolution is thought to have played an important role in early		
	human evolution	Genes	Function or phenotype
	Netural evolution is thought to play the	LCT, MAN2A1, SI, SLC27A4, PPARD, SLC25A20, NCOA1, LEPR, LEPR, ADAMTS19, ADAMTS20, APEH, PLAU, HDAC8, UBR1, USP26, SCP2, NKX2-2, AMY1, ADH, NPY1R, NPY5R	Digestion of milk and dairy products; metabolism of carbohydrates, starch, proteins, lipids and phosphates; alcohol metabolism
	primary role in recent numan evolution	Cytochrome P450 genes (CYP3A5, CYP2E1, CYP1A2 and CYP2D6)	Detoxification of plant secondary compounds
	Adaptation still plays an important role	CD58, APOBEC3F, CD72, FCRL2, TSLP, RAG1, RAG2, CD226, IGJ, TJP1, VPS37C, CSF2, CCNT2, DEFB118, STAB1, SP1, ZAP70, BIRC6, CUGBP1, DLG3, HMGCR, STS, XRN2, ATRN, G6PD, TNFSF5, HbC, HbE, HbS, Duffy, α-globin	Immunity, pathogen response; resistance to malaria and other crowd diseases
	 e.g. adaptation to high altitude environments: independent (convergent) evolution and possible hominin introgression in Tibet Multiple candidate genes that are associated with phenotypes 	LEPR, PON1, RAPTOR, MAPK14, CD36, DSCR1, FABP2, SOD1, CETP, EGFR, NPPA, EPHX2, MAPK1, UCP3, LPA, MMRN1	Energy metabolism, hot or cold tolerance; heat-shock genes
		SLC24A5, SLC25A2, EDAR, EDA2R, SLC24A4, KITLG, TYR, 6p25.3, OCA2, MC1R, MYO5A, DTNBP1, TYRP1, RAB27A, MATP, MC2R, ATRN, TRPM1, SILV, KRTAPs, DCT	The externally visible phenotype (skin pigmentation, hair thickness, eye and hair colour, and freckles)
		CDK5RAP2, CENPJ, GABRA4, PSEN1, SYT1, SLC6A4, SNTG1, GRM3, GRM1, GLRA2, OR4C13, OR2B6, RAPSN, ASPM, RNT1, SV2B, SKP1A, DAB1, APPBP2, APBA2, PCDH15, PHACTR1, ALG10, PREP, GPM6A, DGKI, ASPM, MCPH1, FOXP2	Nervous system, brain function and development; language skills and vocal learning
		BMP3, BMPR2, BMP5, GDF5	Skeletal development
		MYH16, ENAM	Jaw muscle fibres; tooth-enamel thickness

Laland et al 2010

Adaptive evolution is thought to have played an important role in early Genes Function or phenotype human evolution LCT, MAN2A1, SI, SLC27A4, PPARD, SLC25A20, NCOA1, Digestion of milk and dairy products; LEPR, LEPR, ADAMTS19, ADAMTS20, APEH, PLAU, HDAC8, metabolism of carbohydrates, Netural evolution is thought to play the UBR1, USP26, SCP2, NKX2-2, AMY1, ADH, NPY1R, NPY5R starch, proteins, lipids and phosphates; alcohol metabolism primary role in recent human evolution Cytochrome P450 genes (CYP3A5, CYP2E1, CYP1A2 and Detoxification of plant secondary CYP2D6) compounds CD58, APOBEC3F, CD72, FCRL2, TSLP, RAG1, RAG2, CD226, Immunity, pathogen response; Adaptation still plays an important role IGJ, TJP1, VPS37C, CSF2, CCNT2, DEFB118, STAB1, SP1, resistance to malaria and other ZAP70, BIRC6, CUGBP1, DLG3, HMGCR, STS, XRN2, ATRN, crowd diseases G6PD, TNFSF5, HbC, HbE, HbS, Duffy, α-globin e.g. adaptation to high altitude LEPR, PON1, RAPTOR, MAPK14, CD36, DSCR1, FABP2, SOD1, Energy metabolism, hot or cold CETP, EGFR, NPPA, EPHX2, MAPK1, UCP3, LPA, MMRN1 tolerance; heat-shock genes environments: independent The externally visible phenotype SLC24A5, SLC25A2, EDAR, EDA2R, SLC24A4, KITLG, TYR, 6p25.3, OCA2, MC1R, MYO5A, DTNBP1, TYRP1, RAB27A, (skin pigmentation, hair thickness, (convergent) evolution and possible MATP, MC2R, ATRN, TRPM1, SILV, KRTAPs, DCT eye and hair colour, and freckles) hominin introgression in Tibet CDK5RAP2, CENPJ, GABRA4, PSEN1, SYT1, SLC6A4, SNTG1, Nervous system, brain function and GRM3, GRM1, GLRA2, OR4C13, OR2B6, RAPSN, ASPM, RNT1, development; language skills and SV2B, SKP1A, DAB1, APPBP2, APBA2, PCDH15, PHACTR1, vocal learning ALG10, PREP, GPM6A, DGKI, ASPM, MCPH1 FOXP2 Multiple candidate genes that are BMP3, BMPR2, BMP5, GDF5 Skeletal development associated with phenotypes MYH16, ENAM law muscle fibres: tooth-enamel thickness

Laland et al 2010

Adaptive evolution is thought to have played an important role in early Genes Function or phenotype human evolution LCT, MAN2A1, SI, SLC27A4, PPARD, SLC25A20, NCOA1, Digestion of milk and dairy products; LEPR, LEPR, ADAMTS19, ADAMTS20, APEH, PLAU, HDAC8, metabolism of carbohydrates, Netural evolution is thought to play the UBR1, USP26, SCP2, NKX2-2, AMY1, ADH, NPY1R, NPY5R starch, proteins, lipids and phosphates; alcohol metabolism primary role in recent human evolution Cytochrome P450 genes (CYP3A5, CYP2E1, CYP1A2 and Detoxification of plant secondary CYP2D6) compounds CD58, APOBEC3F, CD72, FCRL2, TSLP, RAG1, RAG2, CD226, Immunity, pathogen response; Adaptation still plays an important role IGJ, TJP1, VPS37C, CSF2, CCNT2, DEFB118, STAB1, SP1, resistance to malaria and other ZAP70, BIRC6, CUGBP1, DLG3, HMGCR, STS, XRN2, ATRN, crowd diseases G6PD, TNFSF5, HbC, HbE, HbS, Duffy, α-globin e.g. adaptation to high altitude LEPR, PON1, RAPTOR, MAPK14, CD36, DSCR1, FABP2, SOD1, Energy metabolism, hot or cold CETP, EGFR, NPPA, EPHX2, MAPK1, UCP3, LPA, MMRN1 tolerance; heat-shock genes environments: independent The externally visible phenotype SLC24A5, SLC25A2, EDAR, EDA2R, SLC24A4, KITLG, TYR, 6p25.3, OCA2, MC1R, MYO5A, DTNBP1, TYRP1, RAB27A, (skin pigmentation, hair thickness, (convergent) evolution and possible MATP, MC2R, ATRN, TRPM1, SILV, KRTAPs, DCT eye and hair colour, and freckles) hominin introgression in Tibet CDK5RAP2, CENPJ, GABRA4, PSEN1, SYT1, SLC6A4, SNTG1, Nervous system, brain function and GRM3, GRM1, GLRA2, OR4C13, OR2B6, RAPSN, ASPM, RNT1, development; language skills and SV2B, SKP1A, DAB1, APPBP2, APBA2, PCDH15, PHACTR1, vocal learning ALG10, PREP, GPM6A, DGKI, ASPM, MCPH1 FOXP2 Multiple candidate genes that are BMP3, BMPR2, BMP5, GDF5 Skeletal development associated with phenotypes MYH16, ENAM law muscle fibres: tooth-enamel thickness

Laland et al 2010

Do the genotype and phenotype co-evolve?

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

 Darwin's hypothesized the co-evolution of languages and genes

"If we possessed a perfect pedigree of mankind, a genealogical arrangement of the races of man would afford the best classification of the various languages now spoken throughout the world.... "

Charles Darwin, 1859

- Darwin's hypothesized the co-evolution of languages and genes
- Branching evolution paradigm

- Darwin's hypothesized the co-evolution of languages and genes
- Branching evolution paradigm

- Darwin's hypothesized the co-evolution of languages and genes
- Branching evolution paradigm

Novembre & Ramachandran 2011

- Darwin's hypothesized the co-evolution of languages and genes
- Branching evolution paradigm
- Theoretical framework: one can trace how the genotype and phenotype affect each other
 - Selection acts on phenotypes and gene frequency changes as a consequence

Lewontin et al 2010

- Darwin's hypothesized the co-evolution of languages and genes
- Branching evolution paradigm
- Theoretical framework: one can trace how the genotype and phenotype affect each other
 - Selection acts on phenotypes and gene frequency changes as a consequence
 - Language and behavior can be considered as an extended phenotype

- Darwin's hypothesized the co-evolution of languages and genes
- Branching evolution paradigm
- Theoretical framework: one can trace how the genotype and phenotype affect each other
 - Selection acts on phenotypes and gene frequency changes as a consequence
 - Language and behavior can be considered as an extended phenotype
 - Language and behavior tend to change much faster than the genotype

"Organic evolution is not the only sort of evolution in the sense of a process of cumulative change. When level of intelligence making а symbolic speech possible was reached in the anthropoid line, a new evolutionary process emerged, enormously more rapid than organic evolution."

Sewall Wright, 1950

 Darwin's hypothesized the co-evolution of languages and genes

Cavalli-Sforza 1994

- Darwin's hypothesized the co-evolution of languages and genes
 - Differences with different datasets

- Darwin's hypothesized the co-evolution of languages and genes
 - Differences with different datasets

- Darwin's hypothesized the co-evolution of languages and genes
 - Language and gene trees sometimes mirror each other, but other times do not

(a) Genomic (microsatellite) data

- Darwin's hypothesized the co-evolution of languages and genes
 - Language and gene trees sometimes mirror each other, but other times do not

Atkinson 2011; Hunley et al. 2012

- Darwin's hypothesized the co-evolution of languages and genes
 - Language and gene trees sometimes mirror each other, but other times do not
 - At the level of language families, there is a high correlation but not always at lower language levels

Cavalli-Sforza 1997

- Darwin's hypothesized the co-evolution of languages and genes
 - Language and gene trees sometimes mirror each other, but other times do not
 - At the level of language families, there is a high correlation but not always at lower language levels

Atkinson 2011; Hunley et al. 2012

- Darwin's hypothesized the co-evolution of languages and genes
 - Language and gene trees sometimes mirror each other, but other times do not
 - At the level of language families, there is a high correlation but not always at lower language levels

Hunley et al 2012

- Darwin's hypothesized the co-evolution of languages and genes
 - Language and gene trees sometimes mirror each other, but other times do not
 - At the level of language families, there is a high correlation but not always at lower language levels

"If we possessed a perfect pedigree of mankind, a genealogical arrangement of the races of man would afford the best classification of the various languages now spoken throughout the world.... "

DFG Center Symposium

4th Annual Symposium Ancient Connections in Eurasia

14-15 December 2018 Alte Aula, Münzgasse 30

THE EMERGENCE OF SYMBOLS IN WESTERN EURASIAN PREHISTORY Session chaired by Miriam Haidle

Sche	edule	14:00	Matteo Scardovelli Iconographic changes through time in Upper Palaeolithic		
FRIDAY, 14	H DECEMBER		parietal art		
10:00	Welcome & Introduction to the DFG Center Katerina Harvati and Gerhard Jäger	14:30	Ewa Dutkiewicz & Christian Bentz SignBase – A data-driven approach to abstract signs in the		
10:15	Symposium overview, Hugo Reyes-Centeno		Paleolithic		
POPULATION PALEOLITHIC Session chaired	DYNAMICS OF WESTERN EURASIA FROM THE TO BRONZE AGE by George Perry	15:00	Solange Rigaud Durable cultural traditions and lasting facets of past populations' ethnicity revealed by personal ornaments at the dawn of agriculture 8.000 years ago in Europe		
10:30	Andaine Seguin-Orlando Upper Paleolithic genomes unveil anatomically modern	15:30	Session Discussion		
	humans' prehistory and social behavior	16:00	Coffee break		
11:00	Cosimo Posth Population history of Upper Paleolithic Europeans	ADAPTATIC Session chair	ADAPTATION, SELECTION, AND ADMIXTURE IN EURASIA Session chaired by Katerina Harvati		
11:30	Michela Leonardi A Palaeolithic cultural shift suggested by genetic and genomic data	16:30	Ludovic Orlando Tracking six millenia of horse selection, admixture and management with complete genome time series		
12:00	Martin Bartelheim & Thomas Scholten The transition between the Chalcolithic and the Bronze Age in Western and Central Europe: Response to climatic change?	17:00	Irina Morozova Anthropogenic selection: Changes in human genomes during 6000 years of European civilization		
12:30	Session Discussion	17:30	Hannes Rathmann & Richard Posamentir		
13:00	Lunch and Group Photo		Population history of southern Italy during Greek colonization inferred from skeletal remains		
		18:00	Discussion		

Schedule

SATURDAY, 15TH DECEMBER

POPULATION DIVERSITY AND CHANGE IN EASTERN EURASIA Session chaired by Gerhard Jäger

METHODS IN THE STUDY OF BIO-CULTURAL CO-EVOLUTION

Session chaired by Christian Bentz

10:00	Chao Ning Genetic Perspective on the peopling of the Transeurasian	14:30	Igor Yanovich Languages and genes in Eurasia: a rigorous approach to their mismatches?
10:30	(linguistic) region Martine Robbeets Words, bones and millets in the Transeurasian languages	15:00	Harald Hammarström On the reasons for accelerated/delayed language change: A Eurasian study using the DiACL database
11:00	Mark Hubbe Rate of expansion and occupation of North Eurasia: contributions from the study of prehistoric cranial diversity	15:30	Tiago Tresoldi Computer-assisted data curation and analysis for the purpose of historical and typological language comparison
11:30	Coffee break	16:00	Andrej Evteev
12:00	George van Driem The East Asian linguistic phylum: A reconstruction based on		The level of correlation between mid-facial craniometric, neutral genetic and climatic distances completely depends on the scale of comparison
	language and genes	16:30	Discussion
12:30	Mei-Shin Wu & Hugo Reyes-Centeno Words and genes of Sino-Tibetan speakers	17:00	Coffee and Closing
13:00	Discussion		
13:30	Lunch		

Next class: January 7th

- Adaptive and non-adaptive theories of language evolution
- Preadaptations to language
- Interfaces with archaeology and paleoanthropology

Co-evolution in human evolution

Nature Education 2010; White et al. 2003; Beyin 2013

Co-evolution in human evolution

